Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{\left(x-1\right)^2}=5\Rightarrow\left(x-1\right)=\left\{5;-5\right\}\Leftrightarrow\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
b,\(3+\sqrt{x}=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
c,\(\sqrt{x^2-2x+1}=x-1\Rightarrow\sqrt{\left(x-1\right)^2}=x-1\Rightarrow x-1=\left\{x-1;-\left(x-1\right)\right\}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=x-1\Rightarrow x\in R\\x-1=-\left(x-1\right)\Rightarrow x-1=-x+1\Rightarrow x+x=1+1\Rightarrow2x=2\Rightarrow x=1\end{cases}}\)
Vậy x = 1
d, \(\sqrt{x^2-10x+25}=x+3\Rightarrow\sqrt{\left(x-5\right)^2}=x+3\Rightarrow x-5=\left\{x+3;-\left(x+3\right)\right\}\)
\(\Leftrightarrow\hept{\begin{cases}x-5=x+3\Rightarrow x-x=3+5\Rightarrow0x=8\left(loai\right)\\x-5=-\left(x+3\right)\Rightarrow x-5=-x-3\Rightarrow x+x=-3+5\Rightarrow2x=2\Rightarrow x=1\left(chon\right)\end{cases}}\)
Vậy x = 1
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
Câu 1:
ĐKXĐ: $3\geq x\geq -2$
PT \(\sqrt{x+2}-2-(\sqrt{3-x}-1)=x^2-6x+8\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x+2}+2}-\frac{2-x}{\sqrt{3-x}+1}=(x-2)(x-4)\) (liên hợp)
\(\Leftrightarrow (x-2)\left[\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right]=0\)
Ta thấy với mọi $3\geq x\geq -2$ thì:
\(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}>0\)
\(-x+4>0\)
\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)
\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\neq 0\)
Do đó $x-2=0$ hay PT có nghiệm duy nhất $x=2$ (t/m)
Em thử thôi nha! Ko chắc...
2)Nhận xét x = 1 là một nghiệm. Xét x khác 1, khi đó
ĐK: \(x>1\)
PT \(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt{x-1}=\left(\sqrt{x+8}-3\right)-\left(\sqrt{x+3}-2\right)\) (bớt 1 ở mỗi vế)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\frac{x-1}{\sqrt{x-1}}=\frac{x-1}{\sqrt{x+8}+3}-\frac{x-1}{\sqrt{x+3}+2}\)
\(\Leftrightarrow\left(x-1\right)\left[\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)\right]=0\)
Vì x > 1 nên x - 1 khác 0 suy ra \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)=0\) (1)
Dễ thấy vế trái của pt (1) < 0 với mọi x > 1 (em ko biết lí luận thế nào nữa...)
Do đó với x > 1 thì pt vô nghiệm.
Vậy pt có nghiệm duy nhất x = 1
Nhiều vậy sao giải @@
a) Đặt \(a=\sqrt{1+x}+\sqrt{8-x}\)
\(\Leftrightarrow a^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow\frac{a^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(pt\Leftrightarrow a+\frac{a^2-9}{2}=3\)
\(\Leftrightarrow\frac{a^2+2a-9}{2}=3\)
\(\Leftrightarrow a^2+2a-9=6\)
\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)
Tới đây thay vào rồi tìm x
b) \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\)
Ta có : \(a^2+b^2=x^2-x+1+x+1=x^2+2\)
\(pt\Leftrightarrow2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow2a^2-4ab+2b^2-ab=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)
Tới đây thay vào rồi lại giải tiếp
p/s: Mình bận rồi, bao giờ rảnh giải tiếp
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
a,\(\sqrt{x^2}=5\Rightarrow x=5\)
b,\(\sqrt{x}+5=7\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
f,\(\frac{\sqrt{x-5}}{\sqrt{x-4}}=1\Rightarrow\sqrt{x-5}=\sqrt{x-4}\Rightarrow\left(\sqrt{x-5}\right)^2=\left(\sqrt{x-4}\right)^2\Rightarrow x-5=x-4\)
\(\Rightarrow x-x=5-4\Rightarrow0x=1\)(vô lý) => x không tồn tại