\(\left(x+2\right)^{n+1}\)=\(\left(x+2\right)^{n+11}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2023

(\(x\) + 2)n+1 = ( \(x\) + 2)n+11

(\(x+2\))n+1 -  ( \(x\) + 2)n+11 = 0

(\(x\) + 2)n+1.(  1 + (\(x\) + 2)10) = 0

(\(x\) + 2)10 + 1 > 0 ∀ \(x\)

=> (\(x\) + 2)n+1 = 0 ⇒ \(x\) + 2  = 0 ⇒ \(x\) = -2

vậy \(x\) = -2

3 tháng 6 2015

b) 3x - 6 - (8x + 4) - (10x + 15) = 50

=> 3x - 6 - 8x - 4 - 10x - 15  = 50

=> (3x - 8x - 10x)  =  6+ 4 + 15 + 50

=> -15x = 75 => x = 75 : (-15) = -5

c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số  có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)

+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3

+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1

Vậy x = 5/3 hoặc x = 1

3 tháng 6 2015

a) (n-1)n+11-(n-1)n=0

(n-1)n(n-1)11-(n-1)n=0

(n-1)n[(n-1)11-1]=0

(n-1)n=0 hoặc (n-1)11-1=0

n-1=0   hoặc  (n-1)11   =1

n=1      hoặc  n-1         =1

n=1      hoặc   n          =2

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

24 tháng 4 2017

\(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)

\(\Rightarrow\left(x+2\right)^{n+11}-\left(x+2\right)^{n+1}=0\)

\(\Rightarrow\left(x+2\right)^{n+1}\left[\left(x+2\right)^{10}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)^{n+1}=0\\\left(x+2\right)^{10}-1=0\end{matrix}\right.\)

+) \(\left(x+2\right)^{n+1}=0\Rightarrow x+2=0\Rightarrow x=-2\)

+) \(\left(x+2\right)^{10}-1=0\Rightarrow\left(x+2\right)^{10}=1\)

\(\Rightarrow\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{-2;-1;-3\right\}\)

18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

26 tháng 7 2017

a,

- Theo đề bài ta có:

(8x-1)2n-1 = 52n-1

=> 8x-1 = 5

8x = 6

x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)

- Vậy x = \(\dfrac{3}{4}\)

b,

- Ta có:

(x - 7)x+1 - (x - 7)x+11 = 0

(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0

(x - 7)x . [(x - 7) - (x - 7)11] = 0

=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0

- TH1: (x - 7)x = 0

=> x - 7 = 0

=> x = 7

- TH2:

[(x - 7) - (x - 7)11] = 0

=> x - 7 = (x -7)11

=> x - 7 = 1 hoặc x - 7 = 0

+ Nếu x - 7 = 1

x = 8

+ Nếu x - 7 = 0 (TH1)

- Vậy x = 7 hoặc x = 8

c, - Theo đề bài ta có:

\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)

- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)

=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)

=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)

=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)

\(x=\dfrac{2}{9}\)

- Vậy \(x=\dfrac{2}{9}\)

26 tháng 7 2017

help me

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

14 tháng 7 2019

1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)

=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

14 tháng 7 2019

Bài 2. Ta có: (3x - 5)100 \(\ge\)\(\forall\)x

       (2y + 1)100 \(\ge\)\(\forall\)y

=> (3x - 5)100 + (2y + 1)100 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)

Vậy ...

AH
Akai Haruma
Giáo viên
11 tháng 10 2024

Lời giải:

$13(xy^2)^nx^{m-1}y^3=13x^{m+n-1}y^{2n+3}$

$9(x^2y)^3xy^{11-m}=9x^7y^{14-m}$

Để 2 đơn thức trên đồng dạng thì:

$m+n-1=7; 2n+3=14-m$

$\Rightarrow m+n=8; 2n+m = 11$

$\Rightarrow n=3; m=5$