
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(a=24-x,b=x-25\)
Khi đó pt ban đầu trở thành :
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow30a^2+68ab+30b^2=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)
Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !

ANH HAY CHỊ ƠI LÀM GIÚP EM BAI LỚP 7 ĐI O DUOI DAY A
a) \(\left(x-3\right)^2-4=0\)
\(\Rightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left(x-3\right)^2=2^2=\left(-2\right)^2\)
\(\Rightarrow x-3=2\)hoặc \(\left(x-3\right)=-2\)
\(\Rightarrow\hept{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{5;-1\right\}\)
b) \(x^2-2x=24\)
\(\Rightarrow x.\left(x+2\right)=24\)
\(\Rightarrow x.\left(x+2\right)=4.6\)
\(\Rightarrow x=4\)
Vậy \(x=4\)

a/ Đặt \(x^2+5x=t\)
\(\Rightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x=6\\x^2+5x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-6=0\\x^2+5x+4=0\end{matrix}\right.\) (bấm casio)
b/ Đặt \(x^2-x=t\)
\(\Leftrightarrow t^2-2=t\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=-1\\x^2-x=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) (casio)
c/ \(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(x^2+x=t\)
\(\Rightarrow t\left(t-2\right)-24=0\Rightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+4=0\left(vn\right)\end{matrix}\right.\) (casio)

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=24\)
\(\Rightarrow\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=24\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)=24\)
Đặt \(x^2-5x+5=a,\)ta có
\(\left(a-1\right)\left(a+1\right)=24\Rightarrow a^2=25\Rightarrow a=\pm5\)
Theo cánh đặt,ta có
+,\(x^2-5x+5=5\Rightarrow x\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
+\(x^2-5x+5=-5\Rightarrow x^2-2\cdot\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{15}{4}=0\)(vô lí)
Vậy

a ) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=24\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=24\)
\(\Leftrightarrow2x=-231\Leftrightarrow x=\dfrac{-231}{2}\)
b ) \(\left(x+3\right)^2-\left(x-4\right)\left(x-8\right)=1\)
\(\Leftrightarrow x^2+6x+9-x^2+12x-32=1\)
\(\Leftrightarrow18x=24\Leftrightarrow x=\dfrac{4}{3}\)
Chúc bạn học tốt !!!!!!!!!!!!

a) \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=y\) ta được:
\(y^2-14y+24\)
\(=x\left(y-12\right)-2\left(y-12\right)\)
\(=\left(y-2\right)\left(y-12\right)\)
Thay ngược trở lại:
\(\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)\)
d) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+10\right)+1\)
Đặt \(x^2+5x+4=a\) được:
\(a\left(a+6\right)+1\)
\(=a^2+6a+1\)
\(=a^2+2.a.3+3^2-8\)
\(=\left(a+3\right)^2-\left(\sqrt{8}\right)^2\)
\(=\left(a+3-\sqrt{8}\right)\left(a+3+\sqrt{8}\right)\)
Mấy câu kia tương tự.
\(\Leftrightarrow\left(x^2-x\right)^2-2\left(x^2-x\right)-24=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)