\(\left(X+1\right)^4+\left(X-3\right)^4=82\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

Kết quả là X=2 đúng 100% mình làm rồi.

x = 2 đó mk đảm bảo 100% luôn

10 tháng 2 2019

a) (x+3)4+(x+5)4=16

<=>(x+3)4+(x+5)4=04+24

TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)

TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)

b)(x-2)4+(x-3)4=1=04+14

TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại

TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.

c)(x+1)4+(x-3)4=82=34+(-1)4

làm tương tự => x=2.

d) làm tương tự câu b

10 tháng 3 2019

a/ Đặt (x^2 - 5x) = a thì ta có

a^2 + 10a + 24 = 0

<=> (a + 4)(a + 6) = 0

Làm nốt

10 tháng 3 2019

b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680

<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680

<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680

Đặt x^2 - 11x + 28 = a thì ta có

a(a + 2) = 1680

<=> (a - 40)(a + 42) = 0

Làm nốt

26 tháng 8 2018

undefinedundefined

26 tháng 8 2018

a) Sửa đề

\(\left(x+1\right)^4-\left(x-3\right)^4=82\)

Đặt x - 1 = a

\(\left(a+2\right)^4-\left(a-2\right)^4=82\)

\(\Rightarrow\left[\left(a+2\right)^2\right]^2-\left[\left(a-2\right)^2\right]^2=82\)

\(\Rightarrow\left(a^2+4a+4\right)^2-\left(a^2-4a+4\right)^2=82\)

\(\Rightarrow\left(a^2+4\right)^2+8a\left(a^2+4\right)+16a^2+\left(a^2+4\right)^2-8a\left(a^2+4\right)+16a^2=82\)

\(\Rightarrow\left(a^2+4\right)^2+16a^2=41\)

\(\Rightarrow a^4+8a^2+16+16a^2=41\)

\(\Rightarrow a^4+24a^2=25\)

\(\Rightarrow a^4+24a^2-25=0\)

\(\Rightarrow a^4-a^2+25a^2-25=0\)

\(\Rightarrow a^2\left(a^2-1\right)+25\left(a^2-1\right)=0\)

\(\Rightarrow\left(a^2-1\right)\left(a^2+25\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+25\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+25=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-1\\a^2=-25\end{matrix}\right.\)

Do a2= -25 không tồn tại

Vậy a = 1 ; a = -1

b) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)=24\)

\(\Rightarrow\left[\left(x-1\right)\left(x-2\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=24\)

\(\Rightarrow\left(x^2-3x+2\right)\left(x^2+3x+2\right)=24\)

\(\Rightarrow\left(x^2+2\right)^2-\left(3x\right)^2=24\)

\(\Rightarrow x^4+4x^2+4-9x^2-24=0\)

\(\Rightarrow x^4-5x^2-20=0\)

\(\Rightarrow\left(x^2\right)^2-2.x^2\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}-20=0\)

\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)^2-\dfrac{105}{4}=0\)

\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)^2=\dfrac{105}{4}\)

\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)=\left(\dfrac{\sqrt{105}}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x^2-\dfrac{5}{2}=\dfrac{\sqrt{105}}{2}\\x^2-\dfrac{5}{2}=-\dfrac{\sqrt{105}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=\dfrac{5+\sqrt{105}}{2}\\x^2=\dfrac{5-\sqrt{105}}{2}\end{matrix}\right.\)

...

28 tháng 9 2019

a)\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)

\(\Leftrightarrow-3x^2+3x+3x^2+6x+3=9\)

\(\Leftrightarrow9x=6\Leftrightarrow x=\frac{2}{3}\)

b) \(x^2-4=8\left(x-2\right)\)

\(\Leftrightarrow x^2-4=8x-16\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}\)

28 tháng 9 2019

c) \(x^2-4x+4=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)

d) \(4x^2-12x+9=\left(5-x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(5-x\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=5-x\\2x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)