Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)
a)\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow-3x^2+3x+3x^2+6x+3=9\)
\(\Leftrightarrow9x=6\Leftrightarrow x=\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=11\end{cases}}\)
d) \(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(5-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5-x\\2x-3=x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-2\end{cases}}\)
1) x^2 - 6x = 0
⇔ x ( x - 6 ) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy x = 0 hoặc x = 6
2) 2x^3 - 5x^2 - 12x = 0
⇔ 2x^3 - 8x^2 + 3x^2 - 12x = 0
⇔ 2x^2 ( x - 4 ) + 3x ( x - 4 ) = 0
⇔ ( 2x^2 + 3x ) ( x - 4 ) = 0
⇔ x ( 2x + 3 ) ( x - 4 ) = 0
⇔ \(\left[{}\begin{matrix}x=0\\2x+3=0\\x-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=-1,5\\x=4\end{matrix}\right.\)
Vậy x = 0 , x = -1,5 hoặc x = 4
3) ( x + 1 ) ( x + 2 ) - ( x + 2 ) ( x + 3 ) = 0
⇔ ( x + 2 ) ( x + 1 - x - 3 ) = 0
⇔ -2 ( x + 2 ) = 0
⇔ x = - 2
Vậy x = -2
a) Áp dụng hằng đẳng thức số 3 bạn nhé
b) (2x + 3)(4x^2 - 6x +9) = 8x^3 + 9
Thay x= 120:2 = 60 vào biểu thức.
8* 60^3 + 9 = 1728009
c) = (2x + 1)^3
Thay x= -0,5 vào biểu thức
[2*(-0,5)+1]^3 = 0
d) = x^2 - 49 - x^2 - 2x - 1 = -50 - 2x
Thay x=49 vào biểu thức.
-50 - 2* 49 = -148
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
Bài làm:
a) \(x^6-6x^4+12x^2-8\)
\(=\left(x^2-2\right)^3\)
b) \(x^2+16-8x=\left(x-4\right)^2\)
c) \(10x-x^2-25=-\left(x-5\right)^2\)
d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)
\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)
\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)
e) \(\left(x+y\right)^2-2xy+1\)
\(=x^2+2xy+y^2-2xy+1\)
\(=x^2+y^2+1\)
sai sai
a. \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)
b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)
c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)
d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)
\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)
b) \(7x\left(x-2\right)-\left(x-2\right)=0\)
<=> \(\left(7x-1\right)\left(x-2\right)=0\)
=> x=1/7 hoặc x=2
c) <=> (2x-1)3 =0
=> x=1/2
d)<=> \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)
<=> \(\left(2x-3\right)\left(x+3\right)=0\)
=> x=3/2 hoặc x=-3
e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)
<=> \(\left(x+5\right)\left(x^2+9\right)=0\)
=> x=-5
f) \(x^3-6x^2-x+30=0\)
<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)
<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)
<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)
<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)
=> x=-2 hoặc x=5 hoặc x=3
pt <=> x^4-18x^2+81-12x=1
<=> x^4-18x^2-12x+80 = 0
<=> (x^4-4x^2)-(14x^2-28x)-(40x-80) = 0
<=> (x-2).(x^3+2x^2-14x-40) = 0
<=> (x-2).[(x^3-4x^2)+(6x^2-24x)+(10x-40)] = 0
<=> (x-2).(x-4).(x^2+6x+10) = 0
<=> (x-2).(x-4) = 0 ( vì x^2+6x+10 > 0 )
<=> x-2=0 hoặc x-4=0
<=> x=2 hoặc x=4
Vậy S={2;4}
Tk mk nha