Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(4x-1\right)^2=\left(1-4x\right)^4.\)(*)
Đặt \(\left(4x-1\right)^2=t\) ( điều kiện \(t\ge0\)) \(\Leftrightarrow1-4x=-t^2\)
nên phương trình (*) \(\Leftrightarrow t=-t^2\)
\(\Leftrightarrow t^2+t=0\)
\(\Leftrightarrow t=0\) hoặc \(t=-1\)( loại do \(t\ge0\))
Ta có \(t=0\Leftrightarrow\left(4x-1\right)^2=0\Leftrightarrow4x-1=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy phương trình có 1 nghiệm \(x=\frac{1}{4}.\)
\(\left(x-3\right)^2=16\)
\(\Rightarrow\left(x-3\right)^2=4^2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
Bài 3:
a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Bài 2:
\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)
\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)
\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)
Ta có : (1-4x)2 = [-(4x-1)]2 = 4x-1
=> Biểu thức luôn đúng giù x thuộc bất kì giá trị nào
( 4x - 1 )2 = ( 1 - 4x )2
( 4x - 1 )2 - ( 1 - 4x )2 = 0
[( 4x - 1 ) - ( 1 - 4x )] [( 4x - 1 ) + ( 1 - 4x )] = 0
( 4x - 1 - 1 + 4x ) ( 4x - 1 + 1 - 4x ) = 0
( 8x - 2 ) * 0 = 0
=> \(x\in Q\)bất kì thì biểu thức hòa toàn đúng .
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
(4x-1)2=(1-4x)4
=>(4x-1)2=(4x-1)4
=>(4x-1)4-(4x-1)2=0
đặt 4x-1=t
=>t4-t2=0
=>t2(t2-1)=0
=>t2(t-1)(t+1)=0
=>t2=0;t-1=0;t+1=0
=>t=-1;0;1
xét t=-1=>x=0
t=0=>x=1/4
t=1=>x=1/2
vậy x=1/2;1/4;0
Tại sao dòng thứ 2 bạn Monkey D.luffy lại viết 1 - 4x thành 4x - 1 được?