\(\frac{x}{y^2}=2\)và\(\frac{x}{y}=16\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Điều kiên \(y\ne0\)

\(\frac{x}{y}=16\Rightarrow x=16y\)thế vào \(\frac{x}{y^2}=2\)

\(\Rightarrow\frac{16y}{y^2}=2\Rightarrow\frac{16}{y}=2\Rightarrow y=8\) thế vào \(\frac{x}{y}=16\Rightarrow\frac{x}{8}=16\Rightarrow x=8.16=128\)

12 tháng 9 2018

tìm x biếtxy2 =2xy =16(y0)

\(\Rightarrow x=y^2.2\)

Vì Y khác 0 nên y = 1 

\(\Rightarrow x=1^2.2\)

\(\Rightarrow x=2\)

Vậy x = 2

x-2y= 2(x+y)

=> x-2y = 2x+2y

=> -2y-2y= 2x-x

=> x= -4y

Thay x= -4y vào x-y= x/y

=> -4y-y = -4y/ y

=.> -5y= -4

=> y =4/5

=> x= -16/5

bạn ơi mk làm nhanh chỗ tìm x nha

chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

18 tháng 3 2020

áp dụng t/c dãy tỉ số = nhau ta đc

\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)

=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)

+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)

\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)

từ (1) zà (2)

=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)

Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)

Có  \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\)

Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)

20 tháng 12 2019

Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1

Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)

Vậy : 

13 tháng 5 2016

sai đề r bạn ơi

19 tháng 3 2017

Đặt \(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}=k\)

\(\Rightarrow\left|x\right|=\frac{3k-5}{3}\Rightarrow2\left|x\right|=\frac{6k-10}{3}\)

\(\Rightarrow\left|y\right|=\frac{5k+1}{3}\Rightarrow7\left|y\right|=\frac{35k+7}{3}\)

\(\Rightarrow z=3-7k\Rightarrow3z=9-21k\)

Vì \(2\left|x\right|+7\left|y\right|+3z=-14\)\(\Rightarrow\frac{6k-10}{3}+\frac{35k+7}{3}+\left(9-21k\right)=-14\)

\(\Rightarrow\frac{\left(6k-10\right)+\left(35k+7\right)+\left(27-63k\right)}{3}=-14\)

\(\Rightarrow\frac{-22k+24}{3}=-14\)

\(\Rightarrow-22k+24=-42\)

\(\Rightarrow k=\frac{-42-24}{22}=3\)

\(\Rightarrow\left|x\right|=\frac{3.3-5}{3}=\frac{4}{3}\Rightarrow x=-\frac{4}{3};\frac{4}{3}\)

\(\Rightarrow\left|y\right|=\frac{5.3+1}{3}=\frac{16}{3}\Rightarrow y=-\frac{16}{3};\frac{16}{3}\)

\(\Rightarrow z=3-7.3=-18\)

18 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

           \(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)

\(\Rightarrow4,5x=9\Rightarrow x=2\)

Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)

\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)

10 tháng 10 2019

Vì x,y,z khác 0 nên ta áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\)

Đặt \(x=y=z=a\)

\(A=\frac{2013a^2+a^2+a^2}{a^2+2013a^2+a^2}=\frac{2015a^2}{2015a^2}=1\)