\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+...+\frac{2}{x}-\frac{2}{x+1}=\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{2}-\frac{2}{x+1}=\frac{2005}{2007}\)

\(\Rightarrow1-\frac{2}{x+1}=\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{x+1}=1-\frac{2005}{2007}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2007}\)

\(\Rightarrow x+1=2007\)

\(\Rightarrow x=2006\)

2 tháng 5 2018

\(\frac{1}{2}\cdot\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}\cdot\frac{2005}{2007}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2005}{4014}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2005}{4014}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2005}{4014}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2005}{4014}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2007}\)

\(\Rightarrow x+1=2007\)

\(x=2007-1\)

\(x=2006\)

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Rightarrow x=2008\)

24 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2009}\)

x+1=2009

x=2009-1=2008

Vậy x bằng 2008

19 tháng 4 2017

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)

\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)

=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)

\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)

=>x+1=2005

=>x=2004

28 tháng 4 2017

1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015

AH
Akai Haruma
Giáo viên
12 tháng 9 2024

Lời giải:

$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$2(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)})=\frac{2004}{2005}$

$\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x(x+1)}= \frac{1002}{2005}$

$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$

$\Rightarrow x+1=4010$

$\Rightarrow x=4009$

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

$\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2004}{2005}$

$2\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}\right]=\frac{2004}{2005}$
$\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1002}{2005}$

$\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{2}-\frac{1}{x+1}=\frac{1002}{2005}$

$\frac{1}{x+1}=\frac{1}{2}-\frac{1002}{2005}=\frac{1}{4010}$
$x+1=4010$

$x=4010-1=4009$

 

28 tháng 2 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2003}{2005}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}=\frac{2003}{4010}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2003}{4010}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}=\frac{1}{2005}\)

\(\Rightarrow x+1=2005\Rightarrow x=2004\)

13 tháng 2 2015

Ta có 1/3+1/6+1/10+....+1/x(x+1)=2004/2005

=>2/6+2/12+2/20+....+2/2x(x+1)=2004/2005

=>2[1/6+1/12+1/20+.......+1/2x(x+1)]=2004/2005

=> 2[1/2.3+1/3.4+1/4.5+.....+1/2x(x+1)] = 2004/2005

=>2[1/2 - 1/3+1/3 -1/4+1/4 - 1/5 +.....+1/2x - 1/(2x+2)] = 2004/2005

=>2[1/2 - 1/(2x+2)] = 2004/2005

=>x/(x+1) = 2004/2005 => x=2004