\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93

1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93

1/2(1/3-1/2x+3)=15/93

=>1/3-1/2x+3=10/31

=>1/2x+3=1/93

=>2x+3=93

2x=93-3=90

=>x=45

7 tháng 6 2020

Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=90\)

\(x=45\)

Vậy \(x=45\).

11 tháng 11 2016

Đặt A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)

  2A   = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

  Ta có :  \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

                           \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

                          \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

     2x       = 90

       x       = 45

29 tháng 4 2018

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)

\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)

\(\frac{2x+2}{2x+3}=\frac{98}{99}\)

=) \(2x+2=98\)và \(2x+3=99\)

TH1 : \(2x+2=98\)

\(2x=98-2\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

TH2 : 
\(2x+3=99\)

\(2x=99-3\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

Vậy x = 48

29 tháng 4 2018

Đặt A=

19 tháng 3 2024

Lồ

 

hơi khó đó tick mình nha Hoàng Thu Hà

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

9 tháng 8 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)

\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)