\(\left(3\right)^{x+1}+\left(3\right)^{x+2}+...+\left(3\right)^{x+100}=120\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Lời giải:
\(C=3^{x+1}+3^{x+2}+...+3^{x+100}\)

\(\Rightarrow 3C=3^{x+2}+3^{x+3}+...+3^{x+101}\)

Trừ theo vế ta có:

\(3C-C=3^{x+101}-3^{x+1}\)

\(\Rightarrow C=\frac{3^{x+101}-3^{x+1}}{2}\). Mà \(C=120\Rightarrow \frac{3^{x+101}-3^{x+1}}{2}=120\)

\(\Rightarrow 3^{x+101}-3^{x+1}=240\)

\(\Leftrightarrow 3^x(3^{100}-1)=80\) \(\Rightarrow 3^x=\frac{80}{3^{100}-1}\).

Tóm lại $x$ là một số thỏa mãn \(3^x=\frac{80}{3^{100}-1}\)

Cụ thể hơn là \(x=\log_3\frac{80}{3^{100}-1}\) (nhưng cái này mấy bạn chưa học)

18 tháng 3 2018

biểu thức trong ngoặc chia hết cho 3 (hiển nhiên)

ta có P = 3x (3 + 32 + 33 +...+ 3100)

=3x [3(1+3) + 33(1+3) + 35(1+3) + ... + 399(1+3)]

=4.3x(3 + 33 + 35 + ... + 399)

=4.3x [3(1+9) + 35(1+9) + 37(1+9) +... + 397(1+9)]

=40.3x(3 + 35 + 37 + ... + 397) ⋮ 40

mà [3;40] = 120 ⇒ P⋮120 (ĐPCM)

18 tháng 3 2018

P=(3x+1)+(3x+2)+(3x+3)+...+(3x+100)=3x*3+3x*32+3x*33+...+3x*3100=3x*(3+32+33+34+...+3100)

P=3x[(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)]

P=3x[3(1+3+32+33)+35(1+3+32+33)+...+397(1+3+32+33)]

Vì 1+3+32+33=120 nên trong [ ] chia hết cho 120 => P chia hết cho 120 (vì 1 thừa số của tích chia hết cho 120 thì tích đó chia hết cho 120)

=>đpcm

30 tháng 11 2016

a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)

\(\Leftrightarrow-x^2=-25\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=\pm5\)

 

 

 

 

8 tháng 8 2016

A=(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=(x2+5x+4) ta có:

t(t+2)-24=t2+6t-2t-24

=t(t+6)-4(t+6)

=(t-4)(t+6).Thay vào ta đc:

(x2+5x+4-4)(x2+5x+4+6)=(x2+5x)(x2+5x+10) 

=x(x+5)(x2+5x+10)

B=(x2+3x+2)(x2+7x+120-24)

=(x2+3x+2)(x2+7x+96)

=(x2+2x+x+2)(x2+7x+96)

=[x(x+2)+(x+2)](x2+7x+96)

=(x+1)(x+2)(x2+7x+96)

C và D bn cx lm tương tự

9 tháng 7 2019

\(K=|x-1|+|x-2|+|x-3|\)

\(=\left(|x-1|+|x-3|\right)+|x-2|\)

\(=\left(|x-1|+|3-x|\right)+|x-2|\)

Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)

Hay \(A\ge2\left(1\right)\)

Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)

\(\Leftrightarrow1\le x\le3\)

Đặt \(B=|x-2|\)

Ta có: \(|x-2|\ge0;\forall x\)

Hay \(B\ge0;\forall x\left(2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)

                       \(\Leftrightarrow x=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)

                   Hay \(K\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)

Vậy MIN K=2 \(\Leftrightarrow x=2\)

9 tháng 7 2019

Kiệt ơi phần M là x+28 hay là x-28 đấy