\(\sqrt{x-2}=12\)

b.\(\sqrt{x-1}=\frac{1}{3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

a) \(\sqrt{x-2}=12\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x-2=144\)

\(\Leftrightarrow x=146\) (tm)

Vậy x=146

b)\(\sqrt{x-1}=\frac{1}{3}\left(ĐK:x\ge1\right)\)

\(\Leftrightarrow x-1=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{10}{9}\left(tm\right)\)

Vậy x=\(\frac{10}{9}\)

c)\(\sqrt{2x+\frac{5}{4}}=\frac{3}{2}\left(ĐK:x\ge\frac{-5}{8}\right)\)

\(\Leftrightarrow2x+\frac{5}{4}=\frac{9}{4}\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

vậy \(x=\frac{1}{2}\)

31 tháng 7 2016

Hỏi đáp Toán

7 tháng 12 2016

Bài 1:
Giải:

Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)

+) \(\frac{x}{21}=4\Rightarrow x=84\)

+) \(\frac{y}{14}=4\Rightarrow y=56\)

+) \(\frac{z}{15}=4\Rightarrow z=60\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(84;56;60\right)\)

Bài 2:
Giải:

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)

\(\Rightarrowđpcm\)
 

7 tháng 12 2016

BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau

BT2 là cũng vậy r ss

 

23 tháng 8 2016

hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y 

23 tháng 8 2016

Dễ mà,bn xem lại SBT toán 6 hay là toán 7 í,mk quên rồi,lười quá không buồn đi lấy.haha

31 tháng 7 2016

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

=> \(x=2k+1\)

\(y=3k+2\)

\(z=4k+3\)

Thay \(x=2k+1;y=3k+2;z=4k+3\) vào \(2x+3y-z=50\) ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-4\left(4k+3\right)=50\)

\(4k+2+9k+6-4k-3=50\)

\(9k+5=50\)

\(9k=45\)

\(k=5\)

\(\Rightarrow x=2k+1=2.5+1=11\)

\(y=3k+2=3.5+2=17\)

\(z=4k+3=4.5+3=23\)

Vậy \(x=11;y=17;z=23\)

3 tháng 11 2016

Ta có:\(\frac{5}{\sqrt{2x+1}+2}\)là số nguyên=>\(\sqrt{2x+1}+2=5\)=>\(\sqrt{2x+1}=5-2=3\)

=>\(\sqrt{2x+1}=\sqrt{9}\)=>2x+1=9=>2x=8=>x=4

Vậy x=4

18 tháng 8 2016
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
 
 
18 tháng 8 2016

Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a, b, m ∈ Z, b # 0)
Vì x < y nên ta a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b \(\Rightarrow\) a + a < a + b \(\Rightarrow\) 2a < a + b
Vì 2a < a + b nên x < z                                    (1)
Vì a < b \(\Rightarrow\) a + b < b + b \(\Rightarrow\) a + b < 2b
Do a + b < 2b nên z < y                                   (2)
Từ (1) và (2) ta \(\Rightarrow\) x < z < y

17 tháng 7 2016

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

31 tháng 7 2016

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k\)

\(y=3k\)

\(z=5k\)

Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:

\(2k.3k.5k=810\)

\(30k^3=810\)

\(k^3=27\)

\(k^3=3^3\)

\(\Rightarrow k=3\)

\(\Rightarrow x=2k=2.3=6\)

\(y=3k=3.3=9\)

\(z=5k=5.3=15\)

Vậy \(x=6;y=9;z=15\)

31 tháng 7 2016

Hỏi đáp Toán

4 tháng 11 2016

???

4 tháng 11 2016

vì trong này có số chia hết cho nhau : b mũ 3 chia hết cho b mũ 3(1 cái dưới,1 cái trên) nên còn lại phải bắt buộc chia hết cho nhau

19 tháng 9 2016

Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)

\(\Rightarrow C\le\frac{5}{3}\)

Dấu= khi \(x=-\frac{1}{7}\)

Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)