\(\frac{x}{3}=\frac{y}{4}\)và \(x+y=28\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a;áp dụng t/c của dãy tỉ số = nhau  

x/3=y/4 =>x+y/3=4=28/7=4

x=4*3=12

y=4*4=16

b;áp dụngt/c...

x/2=y/-5 =>x-y/2-(-5)=7/7=1

x=2*2=4

y=1*(-5)=-5

8 tháng 12 2017

\(\frac{x+y}{3+4}=\frac{28}{7}=4\)

x=4.3=12

b\(\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

x=(-1).2=(-2)

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

5 tháng 11 2018

Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) và (2), suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Đặt \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=8k\\y=12k\\z=15k\end{cases}}\)(3)

Mà x2 - y2 = -20

Hay (8k)2 - (12k)2 = -20

=> 64k2 - 144k2 = -20

=> (64 - 144).k2 = -20

=> -80k2 = -20

=> k2 = -20  : (-80)

=> k2 = 1/4

=> k = 1/2 hoặc -1/2

+) Với k = 1/2, thay vào (3) ta được :

 \(\hept{\begin{cases}x=8.\frac{1}{2}=4\\y=12.\frac{1}{2}=6\\z=15.\frac{1}{2}=\frac{15}{2}\end{cases}}\)

+) với k = - 1/2 , thay vào (3), ta được :

.....

13 tháng 11 2016

1    Ta có x -24 = y

Suy ra x - y = 24

               Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

      x/7 = y/3 = x-y/7-3 =24/4=6

suy ra x= 42

           y = 18

13 tháng 11 2016

thank you

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

28 tháng 9 2019

a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)

Vậy ...

b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)

Vậy ...

28 tháng 9 2019

a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)

=>\(\frac{x}{7}=\frac{12}{7}\) 

x=12

=>\(\frac{y}{3}=\frac{12}{7}\)

y=\(\frac{36}{7}\)                            

=>\(\frac{z}{4}=\frac{12}{7}\)

z=48/7

vây x=12;y=36/7;z=48/7

18 tháng 7 2018

\(\frac{x}{y}=\frac{5}{2}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)

18 tháng 7 2018

Ta có: x/y=5/2 và x—y=15

==> x/5=y/2 và x—y=15

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có

x/5=y/2= x—y/5–2=15/3=5

Ta được: x=5.5=25

y=5.2=10

b)Ta có:x/9=y/2 và x—3y=18

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6

Ta được: x= 9.6=54

y=2.6=12

c) Ta có: x/7=y/5=z/2 và x—y+z=—40

Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:

x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10

Ta được: x= 7.(—10)=—70

y= 5.(—10)=—50

z= 2.(—10)=—20