\(A=\frac{x-2}{3x+2}\)

a, A=0

b, A<0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

a, để A=0 thì \(\frac{x-2}{3x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

b, để A< 0 thì \(\frac{x-2}{3x+2}< 0\Leftrightarrow x-2< 3x+2\Leftrightarrow-2-2< 3x-x\Leftrightarrow-4< 2x\Leftrightarrow-2< x\Leftrightarrow x>-2\)
 

13 tháng 6 2017

a)   Xét A = 0

\(\Leftrightarrow\frac{X-2}{3X+2}=0\)

\(\Leftrightarrow X-2=0\)

\(\Leftrightarrow X=2\)

b)  Xét A < 0

\(\Leftrightarrow\frac{X-2}{3X+2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}X-2< 0\\3X+2< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}X< 1\\X< -1\end{cases}}\)

26 tháng 1 2019

a) (x-2)(x+7)<0

suy ra: x-2 và x+7 trái dấu 

mà x-2 < x+7

nên x-2<0 và x+7>0

=>x<2     ;       x>-7

=> -7<x<2

vậy x € {-6;-5;-4;-3;-2;-1;0;1}

còn câu b; c; d không biết làm

26 tháng 1 2019

a, \(\left(x-2\right)\left(x+7\right)< 0\)

suy ra \(\hept{\begin{cases}x-2>0\\x+7< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+7>0\end{cases}}\)

suy ra \(\hept{\begin{cases}x>2\\x< -7\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x>-7\end{cases}}\)

suy ra \(\orbr{\begin{cases}2< x< -7\left(loại\right)\\2>x>-7\end{cases}}\)

Vậy \(2>x>-7\)

Có cách khác nhanh hơn đó là loại trường hợp ngay từ đầu

bạn lập luận như sau

do \(x-2< x+7\)

nên ta có \(\hept{\begin{cases}x-2< 0\\x+7>0\end{cases}}\).........

(nếu bắt buộc phải có 1 số âm và 1 số dương thì số bé hơn sẽ là số âm nha!)

b,Cái này cũng na ná cái trên!

điều kiện xác định \(x\ne-5\)

\(\frac{x-1}{x+5}< 0\)

suy ra \(x-1\)và \(x+5\)trái dấu 

Mà \(x+5>x-1\)

\(\Rightarrow\hept{\begin{cases}x+5>0\\x-1< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>-5\\x< 1\end{cases}\Rightarrow-5< x< 1}\)

kết hợp đkxđ

Vậy ....... (KL)

c,\(x^2-3x>0\)

\(\Rightarrow x\left(x-3\right)>0\)

\(\Rightarrow\hept{\begin{cases}x>0\\x-3>0\end{cases}}\)Hoặc \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< 3\end{cases}}\)

\(\Rightarrow x>3\)hoặc \(x< 0\)

Vậy \(\orbr{\begin{cases}x>3\\x< 0\end{cases}}\)

d, \(\frac{2n-1}{x+2}< 1\)

\(\Rightarrow\frac{2n-1}{x+2}-1< 0\)

\(\Rightarrow\frac{2n-1-x-2}{x+2}< 0\)

\(\Rightarrow\frac{2n-x-3}{x+2}< 0\)

Rồi giải tương tự như bài b nha !

Bài d này sẽ có nhiều bạn nhân chéo lên như thế này

\(\Rightarrow2n-1< x+2\)

nhưng cô mk bảo là không được nhân chéo mà phải chuyển vế! nên mk làm giống cô bảo còn bạn theo cách nào thì tùy nha!

với lại cho mk hỏi cái đề bài d là sai hay đúng?

nếu đúng thì đề còn thiếu đấy! phải viết thêm n là tham số nữa mới giải được!

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

29 tháng 6 2016

a) A = 0 khi x = 2

b) A<0 khi -2/3 < x < 2.

29 tháng 6 2016

Ghi lời giải rõ ràng mik mới k

\(A=\frac{x-2}{3x-2}=0\)

\(=>x-2=0=>x=2\)

b) \(\frac{x-2}{3x-2}< 0\)

Th1 : \(=>\hept{\begin{cases}x-2< 0\\3x-2>0\end{cases}=>\hept{\begin{cases}x< 2\\x>\frac{2}{3}\end{cases}}}\)

TH2 : \(=>\hept{\begin{cases}x-2>0\\3x-2< 0\end{cases}=>\hept{\begin{cases}x>2\\x< \frac{2}{3}\end{cases}}}\)

Ủng hộ na

2 tháng 7 2016

a) Để A = 0                                 ( Điều kiện \(3x+2\ne0;x\ne\frac{-2}{3}\) )

\(\Rightarrow\frac{x-2}{3x+2}=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy khi x = 2 thì giá trị của A = 2

b) Ta có: \(A< 0\Rightarrow\frac{x-2}{3x+2}< 0\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\3x+2< 0\end{cases}}\)   hoặc      \(\hept{\begin{cases}x-2< 0\\3x+2>0\end{cases}}\)

\(\Rightarrow\frac{x>2}{x< \frac{-2}{3}}\)( loại)             hoặc \(\hept{\begin{cases}x< 2\\x>\frac{-2}{3}\end{cases}}\)

\(\Rightarrow\frac{-2}{3}< x< 2\)

Vậy \(\frac{-2}{3}< x< 2\)

18 tháng 9 2019

a) x/5 >2

    x/5>10/5

=>x>10

=> x \(\in\){ 11;12;13;14;15;16;.....}

c) x/-4<2

x/-4<-8/-4

=>x<-8

=> x\(\in\){-9;-10;-11;-12;-13;-14;-15;-16;-17;-18;....}

m ko biết làm câu b

a) 

x/5 >2 

(=) x/5 -2 >0

(=) (x-10)/5 >0 

(=) x-10>0

(=) x>10

b)

-5<0 

=> -5/x <0 

(=) x>0

c)

x/-4 <2

(=) -x/4 - 2<0

(=) (-x-8)/4 <0

(=) -x-8<0

(=) -x<8

(=) x>-8

7 tháng 9 2020

a) 

Vì \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\forall x\)  

\(\Rightarrow x-8< 0\) 

\(x< 8\) 

b) 

Ta có : 

\(3x^2+5\ge5\forall x\)           

\(\Rightarrow7x+9>0\) 

\(7x>-9\) 

\(x>-\frac{9}{7}\)

7 tháng 9 2020

a)\(\frac{x-8}{x^2-2x+3}< 0\)

Vì x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x

nên ta chỉ cần xét x - 8 < 0

x - 8 < 0 => x < 8

Vậy với x < 8 thì \(\frac{x-8}{x^2-2x+3}< 0\)

b)\(\frac{7x+9}{3x^2+5}>0\)

Vì 3x2 + 5 ≥ 5 > 0 ∀ x

nên ta chỉ cần xét 7x + 9 > 0

7x + 9 > 0 => 7x > -9 => x > -9/7

Vậy với x > -9/7 thì \(\frac{7x+9}{3x^2+5}>0\)

24 tháng 8 2017

\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)

24 tháng 8 2017

a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.

Mà: -3x + 3 > -2x - 2

=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2

b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.

TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6

=> x lớn hơn hoặc bằng -1/6

Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0

=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6

=> x bé hơn hoặc bằng 1/4