Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=5\)
\(\Leftrightarrow-13x-3=5\)
\(\Leftrightarrow x=\frac{-8}{13}\)
b) \(\left(x-5\right)\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow x^2-6x+5=x^2-3x+2\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow x=1\)
Vậy x=1
Bài 1:a) \(\left(x-3\right)^3=x^3-9x^2+27x-27\)
b)\(\left(\frac{1}{5}x-1\right)\left(\frac{1}{5}x+1\right)=\frac{1}{25}x^2-1\)
Bài 3:
a)x(x-6) + 10x - 60 =0
\(\Rightarrow x^2-6x+10x-60=0\)
\(\Rightarrow x^2+4x+60=0\)
\(\Rightarrow\left(x+2\right)^2+54=0\)
Vì \(\left(x+2\right)^2+54\ge54\forall x\)
\(\Rightarrow\)không có giá trị nào của x thỏa mãn.
2.
a) \(x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(\Rightarrow x^3+x^2+x-x^3-x^2-x+5\)
\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)
\(=5\)( vì kết quả bằng 5 nên đa thức không phụ thuộc vào biến )
b) \(x.\left(2x+1\right)-x^2.\left(x+2\right)+x^3-x+3\)
\(\Rightarrow2x^2+x-x^3-2x^2+x^3-x+3\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)
\(=3\)( vì kết quả bằng 3 nên đa thức không phụ thuộc vào biến )
c) \(4.\left(6+x\right)+x^2.\left(2+3x\right)-x.\left(5x+4\right)+3x^2.\left(1-x\right)\)
\(\Rightarrow24+4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
\(\Rightarrow24+\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)
\(=24\)( vì kết quả bằng 24 nên đa thức không phụ thuộc vào biến )
\(a)6\left(x+2\right)\left(x-3\right)-3\left(x-2\right)^2-3\left(x-1\right)\left(x+1\right)=1\\ \Leftrightarrow\left(6x+12\right)\left(x-3\right)-3\left(x^2-4x+4\right)-3\left(x^2-1\right)=1\\ \Leftrightarrow6x^2-18x+12x-36-3x^2+12x-12-3x^2+3=1\\ \Leftrightarrow6x-45=1\\ \Leftrightarrow6x=1+45\\ \Leftrightarrow6x=46\)
\(\Leftrightarrow\)\(x=\dfrac{23}{3}\)
\(b)\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1+x\left(4-x^2\right)=5\\ \Leftrightarrow x^3-1+4x-x^3=5\\ \Leftrightarrow4x=5+1\\ \Leftrightarrow4x=6\)
\(\Leftrightarrow\)\(x=\dfrac{3}{2}\)
\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)
\(\Leftrightarrow x^3+1-x^3+5x=71\)
\(\Leftrightarrow5x=71-1\)
\(\Leftrightarrow5x=70\)
\(\Leftrightarrow x=70:5=14\)
\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)
\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)
\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)
\(\Leftrightarrow20x^2+14x=0\)
\(\Leftrightarrow x\left(20x+14\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)
a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71
<=>x^3 +1 -x^3 +5x=71
<=>5x=70
<=>x=14
b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0
<=>[ (2x-3)^3 +27)] - [ 8x(x-1)^2 -4x(4x+1)]=0
<=> (2x-3+3)[ (2x-3)^2 - (2x-3).3 +3^2] - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0
<=>2x( 4.x^2 - 12x +9 - 6x +9 +9) - 2x( 4.x^2 -8x+4 -8x -2)=0
<=>2x(4.x^2 -18x +27) - 2x(4.x^2 -16x +2)=0
<=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0
<=>2x(25-2x)=0
<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2
P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)
=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]
=(n-1)(n2+n+5)
Vì n \(\in\) N nên n2+n+5 > 1
Để P là số nguyên tố thì n-1=1=>n=2
Thử lại thấy n=2 thỏa mãn
Vậy n=2
Ta có
\(\frac{1}{x^2-x+1}-x=1\)
<=>\(\frac{1-x^3+x^2-x}{x^2-x+1}=1\)
<=>\(1-x^3+x^2-x=x^2-x+1\)
<=>\(x^3=0\)
<=>\(x=0\)
Nhớ tick mình nha bạn,cảm ơn nhiều.