Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x-1) - (x+1)(x+2) = 0
x\(^2\)- x -x\(^{^2}\)-2x +x+2=0
-2x+2=0
-2x=0+2
-2x=2
x=-1
Vậy x bằng -1
b, Ta có \(x+1=\left(x+1\right)^2\) \(\Rightarrow x+1=x^2+2x+1\)
\(\Rightarrow x^2+2x+1-\left(x+1\right)=0\Rightarrow\)\(x^2+2x+1-x-1=0\)
\(\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy x = 0 hoặc x = -1
c, Ta có : \(x^3+x=0\Rightarrow x\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\end{cases}}}\) Trường hợp x2 = -1 ( vô lý)
Vì \(x^2\ge0\) với mọi x. => x =0
Vậy x = 0
\(a,2\left(x+5\right)-x^2-5x=0\)
\(< =>2x+10-x^2-5x=0\)
\(< =>-x^2-3x+10=0\)
\(< =>-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}=0\)
\(< =>-\left(x+\frac{3}{2}\right)^2=-\frac{49}{4}\)
\(< =>\left(x+\frac{3}{2}\right)^2=\frac{49}{4}< =>\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{49}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{49}{4}}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{7}{2}-\frac{3}{2}=\frac{4}{2}=2\\x=-\frac{7}{2}-\frac{3}{2}=-\frac{10}{2}=-5\end{cases}}\)
b, Đật x = y+5/3 khi đó phương trình trở thành
\(y^3-\frac{37}{3}y+\frac{476}{27}=0\)
Đặt \(y=u+v\)sao cho uv=37/9 thế vào ta được phương trình mới sau ta được
\(u^3+v^3+\left(3uv-\frac{37}{3}\right)\left(u+v\right)+\frac{426}{27}=0\)
Khi đó ta có hệ sau : \(\hept{\begin{cases}u^3+v^3=-\frac{426}{27}\\u^3v^3=\frac{50653}{729}\end{cases}}\)
Theo Vi ét u^3 và v^3 là 2 nghiệm của pt \(x^2-\frac{426}{27}x+\frac{50653}{729}=0\)
Đến đây delta phát rồi tìm ngược lại là xong :))))
mình dùng cardano nhưng làm trong nháp xong gửi nên chắc chắc bạn sẽ không hiểu được :V
làm luôn câu cuối nhé ^^
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)
\(\Leftrightarrow3x^2-10x-8=0\)
\(\Leftrightarrow3\left(x^2-\frac{10}{3}x+\frac{25}{9}\right)-\frac{147}{9}=0\)
\(\Leftrightarrow3\left(x-\frac{5}{3}\right)^2=\frac{147}{9}\Leftrightarrow\left(x-\frac{5}{3}\right)^2=\frac{147}{27}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=\sqrt{\frac{147}{27}}\\x-\frac{5}{3}=-\sqrt{\frac{147}{27}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{147}{27}}+\frac{5}{3}\\x=-\sqrt{\frac{147}{27}}+\frac{5}{3}\end{cases}}\)
a) \(2.\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2.\left(x+5\right)-x.\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy \(S=\left\{-5,2\right\}\)
b) \(x^3-5x^2-4x+20=0\)
\(\Leftrightarrow x^2\left(x-5\right)-4.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)
Vậy \(S=\left\{5,\pm2\right\}\)
c) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{4,-\frac{3}{2}\right\}\)
a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)
\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)
\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)
b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
c) \(x\left(x-3\right)+4x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
d) \(x^2-36=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
e) \(x^2+3x+1=2\)
\(\Leftrightarrow x^2+3x+1-2=0\)
\(\Leftrightarrow x^2+3x-1=0\)
\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)
Còn lại ........... Tự lm nất nha
Bài làm:
a) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
b) \(x\left(x-1\right)=x-1\)
\(\Leftrightarrow x^2-x-x+1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
c) \(5x\left(x-1\right)=1-x\)
\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{5}\end{cases}}\)
d) \(\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{4}\end{cases}}\)
\(a,x+5x^2=0< =>x\left(5x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\5x+1=0\end{cases}< =>\orbr{\begin{cases}x=0\\5x=-1\end{cases}< =>\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}}\)
\(b,x\left(x-1\right)=x-1< =>x^2-x=x-1\)
\(< =>x^2-x-x+1=0< =>x\left(x-1\right)-\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(x-1\right)=0< =>x=1\)
\(c,5x\left(x-1\right)=1-x< =>5x^2-5x=1-x\)
\(< =>5x^2-5x+x-1=0< =>5x^2-4x-1=0\)
\(< =>5x^2-5x+x-1=0< =>5x\left(x-1\right)+x-1=0\)
\(< =>\left(5x+1\right)\left(x-1\right)=0< =>\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=1\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}}\)
\(d,\left(3x-4\right)^2-\left(x+1\right)^2=0\)
\(< =>9x^2-24x+16-x^2-2x-1=0\)
\(< =>8x^2-26x+15=0< =>8\left(x^2-\frac{13}{4}x+\frac{169}{64}\right)-\frac{2082}{64}=0\)
\(< =>\left(x-\frac{13}{8}\right)^2=\frac{2082}{512}=\frac{2082}{16\sqrt{2}}\)
\(< =>\orbr{\begin{cases}x-\frac{13}{8}=\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x-\frac{13}{8}=-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{13}{8}+\frac{\sqrt{2082}}{4\sqrt[4]{2}}\\x=\frac{13}{8}-\frac{\sqrt{2082}}{4\sqrt[4]{2}}\end{cases}}\)(nghiệm vô tỉ)
\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)
\(\Leftrightarrow\)\(5x-1=0\)
\(\Leftrightarrow\)\(5x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)
Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)
Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)
Chúc bạn học tốt ~
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)
<=> \(-1\left(5x-1\right)=0\)
<=> \(5x-1=0\)
<=> \(5x=1\)
<=> \(x=\frac{1}{5}\)
b/ \(x\left(x+1\right)\left(x+2\right)=0\)
<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
<=> \(\left(3x+2\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)
\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)
\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)
TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
Ta có : x + 5x2 = 0
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
b) x + 1 = (x + 1)2
=> (x + 1) - (x + 1)2 = 0
<=> (x + 1)[1 - (x + 1)] = 0
<=> (x + 1)(-x) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
c) \(x^3+x=0\)
\(\Rightarrow x\left(x^2+1\right)=0\)
Vì \(\left(x^2+1\right)>0\forall x\)
Nên : x = 0
a)x=-25
b)x=0 hoặc x=1
c)x=0