Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\Leftrightarrow8x^3-4x^4-x^2+16x^2-8x^3-2x+8x-4x^2-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+11x^2+6x-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+7x^2+2x-5=0\)
\(\Leftrightarrow-4x^3\left(x-1\right)-4x^2\left(x-1\right)+3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x^3-4x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[-4x^2\left(x-1\right)-8x\left(x-1\right)-5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(4x^2+8x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^2+8x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2=-1\left(VL\right)\end{matrix}\right.\)
Vậy ...
b ) Giả sử : \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
thì \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(\frac{ab+1}{a+b}\right)^2-2\left(ab+1\right)\ge0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\) ( luôn đúng )
=> Điều giả sử là đúng
=> ĐPCM
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)