Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab-2bc+2ac\)
\(=2a^2+2b^2+2c^2-4bc\)
\(=2+2\cdot9+2\cdot1-4\cdot3\cdot\left(-1\right)=22+12=34\)
b: \(B=\left(a+b-a+b\right)\left(a+b+a-b\right)=4ab=4\cdot2\cdot5=40\)
a ) \(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3\left(3x\right)^2+3.3x+1\)
\(=\left(3x+1\right)^3\)
Thay \(x=13\) vào b/t trên ta được :
\(\left(3.13+1\right)^3=40^3=64000\)
Vậy g/t b/t trên là : \(64000\) tại \(x=13\)
b ) \(x^3-15x^2+75x-125\)
\(=x^3-3x^2.5+3x.5^2-5^3\)
\(=\left(x-5\right)^3\)
Thay \(x=35\) vào b/t trên ta được :
\(\left(35-5\right)^3=30^3=27000\)
Vậy g/t b/t trên là : \(27000\Leftrightarrow x=35\)
c ) \(x^3+12x^2+48x+65\)
\(=x^3+3x^2.4+3x.4^2+4^3+1\)
\(=\left(x+4\right)^3+1\)
Thay \(x=6\) vào b/t trên , ta được :
\(\left(6+4\right)^3+1=10^3+1=1000+1=1001\)
Vậy g/t b/t trên là : \(1001\) tại \(x=6\)
a) \(27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2+3.3x+1^3\)
\(=\left(3x+1\right)^3\)
Thay x = 13, ta được:
\(=\left(3.13+1\right)^3\)
\(=40^3\)
\(=64000\)
b) \(x^3-15x^2+75x-125\)
\(=x^3-3.x^2.5+3.x.5^2-5^3\)
\(=\left(x-5\right)^3\)
Thay x = 35, ta được:
\(=\left(35-5\right)^3\)
\(=30^3\)
\(=27000\)
c) \(x^3+12x^2+48x+65\)
\(=x^3+5x^2+7x^2+35x+13x+65\)
\(=x^2\left(x+5\right)+7x\left(x+5\right)+13\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+7x+13\right)\)
Thay x = 6, ta được:
\(=\left(6+5\right)\left(6^2+7.6+13\right)\)
\(=1001\)
a) A=(x+5)3 Thay x= -10 vào ta được A=(-10+5)3= -125
b) B=(x-3)3 Thay x=13 vào ta được B=(13-3)3=1000
c) C=(x/2 - y/3)3 Thay x=-8 và y=6 ta được C=(-8/2 - 6/3)3= -216
a) \(x^3+15x^2+75x=-125\)
\(\Leftrightarrow x^3+15x^2+75x+125=0\)
\(\Leftrightarrow x^3+125+15x^2+75x=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+5x+25\right)+15x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+20x+25\right)=0\)
\(TH1:x+5=0\Leftrightarrow x=-5\)
\(TH2:x^2+20x+25=0\)
\(\Leftrightarrow\left(x+10\right)^2=75\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{75}-10\\x=-\sqrt{75}-10\end{cases}}\)
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
a, x2-x+1/4=(x-1/2)2
b, (x+1)3
c,(2x+1)3
d, (2-3x03
e, (10x)2-(x2+25)2=:[10x+(x2+25)][10x-(x2+25)]=(10x+x2+25)(10x-x2-25)
a)
\(\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.2^2-2^3=0\)
\(\left(3x-2\right)^3=0\)
3x-2=0
3x=2
x=2/3
b)
\(x^3-3.x^2.5+3.x.5^2+5^3=0\)
\(\left(x-5\right)^3=0\)
x-5=0
x=5