Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
1) \(x^2-6x+9=\left(5-3x\right)^2\)
\(\left(x-3\right)^2=\left(5-3x\right)^2\)
\(\Rightarrow x-3=5-3x\)
\(\Rightarrow x+3x=5+3\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
\(3x\left(2x-3\right)=5\left(3-2x\right)\)
\(3x\left(2x-3\right)+5\left(2x-3\right)=0\)
\(\left(3x+5\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{3}{2}\end{cases}}\)
3) \(x^2-2x-15=0\)
\(x^2-2x+1-16=0\)
\(\left(x-1\right)^2-4^2=0\)
\(\left(x-1-4\right)\left(x-1+4\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
\(9\left(3x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(9x+3\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(9x+3-2x-3\right)\left(9x+3+2x+3\right)=0\)
\(\Leftrightarrow7x\left(11x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\11x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-6}{11}\end{cases}}\)
\(3\left(2x-5\right)^2-12\left(x+7\right)^2=0\)
\(\Leftrightarrow3\left(4x^2-20x+25\right)-12\left(x^2+14x+49\right)=0\)
\(\Leftrightarrow12x^2-60x+75-12x^2-168x-588=0\)
\(\Leftrightarrow-228x-513=0\)
\(\Leftrightarrow x=\frac{513}{288}=\frac{57}{32}\)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a/ => 4x2 + x - 4x - 1 = 0
=> x(4x + 1) - (4x + 1) = 0
=> (4x + 1)(x - 1) = 0
=> 4x + 1 = 0 => x = -1/4
hoặc x = 1
Vậy x = -1/4 ; x = 1
b/ => 4(4x2 + 28x + 49) - 9(x2 +6x + 9) = 0
=> 16x2 + 112x + 196 - 9x2 - 54x - 81 = 0
=> 7x2 + 58x + 115 = 0
=> 7x2 + 35x + 23x + 115 = 0
=> 7x(x + 5) + 23(x + 5) = 0
=> (x + 5)(7x + 23) = 0
=> x + 5 = 0 => x = -5
hoặc 7x + 23 = 0 => 7x = -23 => x = -23/7
Vậy x = -5 ; x = -23/7
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
a) 4x2 - 9=0
(2x)2 - 32 = 0
=》(2x - 3)(2x+3) =0
=》 2x - 3 = 0 hoặc 2x +3 = 0
=》x = 1,5 hoặc x = - 1,5
b) (x + 1)2 - 16 = 0
=》( x + 1)2 - 42 = 0
=》( x - 3 )( x + 5 ) =0
=》 x - 3 = 0 hoặc x + 5 = 0
=》 x = 3 hoặc x = -5
c) ( x + 1)2 - (2x + 3)2 = 0
=》 ( x + 1 - 2x - 3)(x+1 +2x +3 ) =0
=》 ( -x - 2 )( 3x + 4 ) = 0
=》 -x -2 =0 hoặc 3x + 4 = 0
=》 x = -2 hoặc x = -4/3
d) 4(3x +2)2 - 9( x + 1 )2 =0
=》 [ 2(3x +2) ]2 - [3 (x + 1)] 2 = 0
=> ( 6x +4 )2 - ( 3x + 3)2 = 0
=》 ( 6x +4 -3x -3 )( 6x + 4 + 3x + 3 )=0
=》 (3x +1)(9x + 7 ) =0
=》 3x + 1 =0 hoặc 9x + 7 =0
=》 x = -1/3 hoặc x = -7/9
\(=\left(9x+3\right)^2-\left(2x+3\right)^2=\left(9x+3+2x+3\right)\left(9x+3-2x-3\right)=\left(11x+6\right)7x\)
\(9.\left(3x+1\right)^2-\left(2x+3\right)^2=0\)
\(9.\left[\left(3x\right)^2+2.3x.1+1^2\right]-\left[\left(2x\right)^2+2.2x.3+3^2\right]=0\)
\(9.\left(9x^2+6x+1\right)-\left(4x^2+12x+9\right)=0\)
\(9.9x^2+9.6x+9.1-4x^2-12x-9=0\)
\(81x^2+54x+9-4x^2-12x-9=0\)
\(77x^2+42x=0\)
\(77x^2=-42x\)
\(\frac{77x^2}{x}=-42\)
\(77x=-42\)
\(x=-\frac{42}{77}=-\frac{6}{11}\)
Vậy\(x=-\frac{6}{11}\)