Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x2 + 4)2 - 4x(x2 + 4) = 0
(x2 + 4)(x2 + 4 - 4x) = 0
(x2 + 4)(x - 2)2 = 0
\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0
\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0
\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2
Vậy x = 2
b) x5 - 18x3 + 81x = 0
x(x4 - 18x2 + 81) = 0
x(x2 - 9) = 0
x(x - 3)(x + 3) = 0
\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3
Vậy \(x\in\left\{0;3;-3\right\}\)
a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)
\(=\left(x^2+4\right)\left(x+2\right)^2=0\)
Mà \(x^2\ge0\Rightarrow x^2+4>0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(x^5-18x^3+81x=0\)
\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)
1. \(x^2-x+\frac{1}{4}-\frac{485}{4}=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x+\frac{\sqrt{485}-1}{2}\right)\)
2) \(81x^2+4=4\left(\frac{81}{4}x^2+1\right)\)
3) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)=> Min A =-3 <=> x=2
. Nhớ L I K E
1.
\(a,x^2-x-121\)\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{485}{4}\)\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)
\(b,81x^2+4\)\(=\left(9x^2\right)^2+2^2=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2\)
\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)
2.
\(A=x^2-4x+1=\left(x^2-2.x.2+4\right)-3\)\(=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2-3\ge-3\)
Dấu ''='' xảy ra khi x-2=0 => x=2
Vậy GTNN của A là A=-3 khi x=2
\(x^5-18x^3+81x=0\)
\(\Leftrightarrow\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(\Leftrightarrow x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow x.\left(x^2-9\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow x.\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-9=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2=9\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=\pm3\end{array}\right.\)
Vây ..................
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
\(81x^3-27\)
\(=\left(\sqrt[3]{81}.x\right)^3-3^3\)
\(=\left(\sqrt[3]{81}.x-3\right)\left[\left(\sqrt[3]{81}.x\right)^2+\sqrt[3]{81}.x.3+9\right]\)
Tham khảo nhé~
a)4-x^2-4x=4-x^2-2x-2x=-2x-4-x*(x+2)=-2*(x+2)-x*(x+2)=(-2-x)*(x+2)=-(x+2)^2
b)81x^3-27=27*3*x^3-27=27(3*x^3-1)
81x3 - 4x = 0
=> x.(81x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\81x^2-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\81x^2=4\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x^2=\frac{4}{81}\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x\in\left\{\frac{2}{9};-\frac{2}{9}\right\}\end{cases}}\)
81x^3 - 4x = 0
<=>x.(81x2-4)=0
<=>x.(9x-2)(9x+2)=0
<=>x=0 hoặc x=2/9 hoặc x=-2/9