\(4x^4-6x^3-8x^2+24x=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

1)

\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)

\(=15x^2(x+2)-x(x+2)-6(x+2)\)

\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)

\(=(x+2)[5x(3x-2)+3(3x-2)]\)

\(=(x+2)(3x-2)(5x+3)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

2)

\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)

\(=x^2(x-1)+5x(x-1)-24(x-1)\)

\(=(x-1)(x^2+5x-24)\)

\(=(x-1)(x^2-3x+8x-24)\)

\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)

15 tháng 10 2018

a. \(\left(2x-1\right)^2-4x^2+1=0\)

\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(\Leftrightarrow2-4x=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

b/ \(6x^3-24x=0\)

\(\Leftrightarrow6x\left(x^2-4\right)=0\)

\(\Leftrightarrow6x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

c/ \(2x\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow2x\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy ...

d/ \(x^3-5x^2+x-5=0\)

\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)=0\)

\(x^2+1>0\)

\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy..

30 tháng 5 2017

a) \(4x^2-4x=-1\)

\(\Leftrightarrow4x\left(x-1\right)=-1\)

\(\Leftrightarrow4x=-1\) hoặc \(x-1=-1\)

\(\Leftrightarrow x=\dfrac{-1}{4}\) hoặc \(x=0\)

Vậy S={\(\dfrac{-1}{4};0\)}

28 tháng 8 2017

\(\text{a) }4x^2-4x=-1\\ \Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\\ \Leftrightarrow\left(2x-1\right)^2=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }x=\dfrac{1}{2}\\ \)

\(\text{ b) }8x^3+12x^2+6x+1=0\\ \Leftrightarrow\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=0\\ \Leftrightarrow\left(2x+1\right)^3=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x-\dfrac{1}{2}\\ \text{Vậy }x=-\dfrac{1}{2}\)

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

25 tháng 2 2018

@Akai Haruma

25 tháng 2 2018

@soyeon_Tiểubàng giải

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

Bài 1:

a) \(\left(8x^4-4x^3+x^2\right):2x^2\)

\(=4x^2-2x+1\)

b) \(\left(6x^4-3x^3+x^2\right):3x^2\)

\(=2x^2-x+3\)

Bài 2:

\(2x\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\2x-1=0\Rightarrow x=0,5\end{matrix}\right.\)

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(