Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 3x - 24 ) . 75 = 2.76 .1/20170
( 3x - 24 ) . 75 =235298
( 3x - 24 ) = 235298 : 75
( 3x - 24 ) =14
3x = 14 + 24
3x = 30
x = 0
dung 100%
\(\left(3x-2^4\right).7^5=2.7^6.\frac{1}{2017^0}\)
\(\Leftrightarrow\left(3x-16\right).7^5=2.7^6.1\)
\(\Leftrightarrow3x-16=\frac{2.7^6}{7^5}\)
\(\Leftrightarrow3x-16=2.7\)
\(\Leftrightarrow3x-16=14\)
\(\Leftrightarrow3x=30\)
\(\Leftrightarrow x=10\)
\(\left(3x-7\right)^{2019}=\left(3x-7\right)^{2017}\)
\(\Rightarrow\left(3x-7\right)^{2019}-\left(3x-7\right)^{2017}=0\)
\(\Rightarrow\left(3x-7\right)^{2017}\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\left(3x-7\right)^{2017}=0\text{ hoặc }\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow3x-7=0\text{ hoặc }\left(3x-7\right)^2=1\)
\(\Rightarrow3x-7=0\text{ hoặc } \hept{\begin{cases}3x-7=1\\3x-7=-1\end{cases}}\)
\(\Rightarrow3x=7\text{ hoặc }3x=8\text{ hoặc }3x=6\)
\(\Rightarrow x=\frac{7}{3}\text{ hoặc }x=\frac{8}{3}\text{ hoặc }x=2\)
\(\left(3x-7\right)^{2019}=\left(3x-7\right)^{2017}\)
\(\left(3x-7\right)^{2019}-\left(3x-7\right)^{2017}=0\)
\(\left(3x-7\right)^{2017}\cdot\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2017}=0\\\left(3x-7\right)^2-1=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x-7=0\\\left(3x-7\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=7\\3x-7=\pm1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\3x=6\text{ hoặc }3x=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=2\text{ hoặc }x=\frac{8}{3}\end{cases}}\)
\(\Rightarrow x\in\left\{\frac{7}{3};2;\frac{8}{3}\right\}\)
\(\left(-5-x\right)\left(3x+15\right)=\left(-2017\right)^{2008}\)
\(\Rightarrow-5\left(3x+15\right)-x\left(3x+15\right)=2017^{2008}\)
\(\Rightarrow-15x-75-3x^2+15x=2017^{2008}\)
\(\Rightarrow-75-3x^2=2017^{2008}\)
\(\Rightarrow3x^2=-75-2017^{2008}\)
\(3x^2\ge0\)
\(-75-2017^{2008}< 0\)
Vậy phương trình vô nghiệm
\(\left(3x-7\right)^{2015}=\left(3x-7\right)^{2017}\Rightarrow\left(3x-7\right)^{2017}-\left(3x-7\right)^{2015}=0\Leftrightarrow\left(3x-7\right)^{2015}\left[\left(3x-7\right)^2-1\right]=0\Leftrightarrow\orbr{\begin{cases}3x-7=0\\\left(3x-7\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x=7\\3x-7=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{1+7}{3}=\frac{8}{3}\end{cases}}\)
Vậy phương trình có hai nghiệm là \(x=\frac{7}{3}\)và \(x=\frac{8}{3}\)
Vì \(\left(3x-7\right)^{2015}=\left(3x-7\right)^{2017}\) =>3x-7=0 hoặc 3x-7=1
- Nếu 3x-7=0=>x=\(\frac{7}{3}\)
- Nếu 3x-7=1=>x=\(\frac{8}{3}\)
Vậy \(x=\orbr{\begin{cases}\frac{7}{3}\\\frac{8}{3}\end{cases}}\)
...