Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+2.\left(x-3\right)=0\)
\(x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(x.\left(x-3\right)-3x+9=0\)
\(x.\left(x-3\right)-3.\left(x-3\right)=0\)
\(\left(x-3\right)^2=0=>x=3\)
a,\(x^2-3x+2\left(x-3\right)=0.\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
c)\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow2x+\frac{3}{5}=\pm\frac{3}{5}\)
- Với \(2x+\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow2x=0\Rightarrow x=0\)
- Với \(2x+\frac{3}{5}=-\frac{3}{5}\)
\(\Rightarrow2x=-\frac{6}{5}\Rightarrow x=-\frac{3}{5}\)
a)x=10
b)x=61/114
c)x=0
d)sai cái gì đó
Đáp án là gì nhưng lời giải ???????
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
\(x^3+3x^2+3x+9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+3\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\x^2+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\x^2=-3\Rightarrow ktm\end{cases}}\)
Vậy x=-3
a) \(x^2-2x=0\)
\(x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2-4^2=0\)
\(\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\left(3x-5\right)\left(3x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
c) \(x^2-25x=0\)
\(x\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2-3^2=0\)
\(\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\left(4x-4\right)\left(4x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-4=0\\4x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)
a) \(x^2-2x=0\)
\(x.\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
vậy..
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2=16\)
\(\left(3x-1\right)^2=4^2=\left(-4\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
vậy ...
c) \(x^2-25x=0\)
\(x.\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
vậy ....
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x-1=3\\4x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy ...
Bài 1:
a)
\(9x^2-49=0\)
\(9x^2-49+49=0+49.\)
\(9x^2=49\)
\(\frac{9x^2}{9}=\frac{49}{9}\)
\(x^2=\frac{49}{9}\)
\(x=\sqrt{\frac{49}{9}}\)
\(x=\frac{\sqrt{49}}{\sqrt{9}}\)
\(x=\frac{7}{3}\)hay \(x=2,33333...\)
b)
\(\left(x-1\right)\left(x+2\right)-x-2=0.\)
\(x^2+x-2-x-2.\)
\(x^2+\left(x-x\right)-\left(2+2\right)=\)\(0\)
\(x^2-4=0\)
\(x=\sqrt{4}\)
\(x=2\)
Bài 2:
a)
\(\frac{x}{x}-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6}{x}-3x.\)
\(=7-\frac{6}{x}-3x\)
b)
\(6x-\frac{3}{x}\div4x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3}{x}\div\frac{4}{1}x^2-\frac{1}{3x^2}.\)
\(=6x-\frac{3}{x}\times\frac{1}{4}x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3x^2}{x4}-\frac{1}{3x^2}\)
\(=6x-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{6x}{1}-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{72x^3-36x^3-12x^2}{12x^2}\)
\(=\frac{36-12x^2}{12x^2}\)
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\left(x+2\right)\right]^2=9\)
\(\left[2x+1-2\left(x+2\right)\right]\left[2x+1+2\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(-3\left(4x+5\right)=9\)
\(4x+5=-3\)
\(4x=-8\)
\(x=-2\)
b) \(x^2-2x-15=0\)
\(x^2-5x+3x-15=0\)
\(x\left(x-5\right)+3\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
c) \(2x^2+3x-5=0\)
\(2x^2-2x+5x-5=0\)
\(2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}}\)
a/ => 4x2 + x - 4x - 1 = 0
=> x(4x + 1) - (4x + 1) = 0
=> (4x + 1)(x - 1) = 0
=> 4x + 1 = 0 => x = -1/4
hoặc x = 1
Vậy x = -1/4 ; x = 1
b/ => 4(4x2 + 28x + 49) - 9(x2 +6x + 9) = 0
=> 16x2 + 112x + 196 - 9x2 - 54x - 81 = 0
=> 7x2 + 58x + 115 = 0
=> 7x2 + 35x + 23x + 115 = 0
=> 7x(x + 5) + 23(x + 5) = 0
=> (x + 5)(7x + 23) = 0
=> x + 5 = 0 => x = -5
hoặc 7x + 23 = 0 => 7x = -23 => x = -23/7
Vậy x = -5 ; x = -23/7
\(=\left(9x+3\right)^2-\left(2x+3\right)^2=\left(9x+3+2x+3\right)\left(9x+3-2x-3\right)=\left(11x+6\right)7x\)
\(9.\left(3x+1\right)^2-\left(2x+3\right)^2=0\)
\(9.\left[\left(3x\right)^2+2.3x.1+1^2\right]-\left[\left(2x\right)^2+2.2x.3+3^2\right]=0\)
\(9.\left(9x^2+6x+1\right)-\left(4x^2+12x+9\right)=0\)
\(9.9x^2+9.6x+9.1-4x^2-12x-9=0\)
\(81x^2+54x+9-4x^2-12x-9=0\)
\(77x^2+42x=0\)
\(77x^2=-42x\)
\(\frac{77x^2}{x}=-42\)
\(77x=-42\)
\(x=-\frac{42}{77}=-\frac{6}{11}\)
Vậy\(x=-\frac{6}{11}\)
\(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-1-9\right)\left(3x-1+9\right)=0\)
\(\Leftrightarrow\left(3x-10\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-10=0\\3x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-\frac{8}{3}\end{cases}}}\).