K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Ta có : (2x + 3)2 - (2x + 1)(2x - 1) = 22

=> 4x2 + 12x + 9 - 4x2 + 1 = 22

=> 12x + 10 = 22

=> 12x = 12

=> x = 1

Vậy x = 1

2 tháng 9 2020

\(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

\(\Leftrightarrow\left(2x+3\right)^2-4x^2+1=22\)

\(\Leftrightarrow\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

\(\Leftrightarrow3.\left(4x+3\right)=21\)

\(\Leftrightarrow4x+3=7\)

\(\Leftrightarrow4x=4\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

24 tháng 6 2018

a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

<=> \(\left(2x+3\right)^2-4x^2+1=22\)

<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

<=> \(3\left(4x+3\right)=21\)

<=> \(4x+3=7\)

<=> \(4x=4\)

<=> \(x=1\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

25 tháng 8 2019

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)

7 tháng 8 2020

a) \(\left(2x+1\right)\left(1-2x\right)+\left(2x-1\right)^2=22\)

\(\Rightarrow\left(1+2x\right)\left(1-2x\right)+\left[\left(2x\right)^2-2.2x+1^2\right]=22\)

\(\Rightarrow1^2-\left(2x\right)^2+\left(4x^2-4x+1\right)=22\)

\(\Rightarrow1-4x^2+4x^2-4x+1=22\)

\(\Rightarrow2-4x=22\)

\(\Rightarrow-4x=22-2=20\)

\(\Rightarrow x=20:\left(-4\right)=-5\)

b/ \(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2.\left(x+1\right)^2=0\)

\(\Rightarrow\left(x^2-2.x.5+5^2\right)+\left(x^2-3^2\right)+2.\left(x^2+2.x.1+1^2\right)=0\)

\(\Rightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)

\(\Rightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)

\(\Rightarrow-14x+14=0\)

\(\Rightarrow-14x=0-14=-14\)

\(\Rightarrow x=\left(-14\right):\left(-14\right)=1\)

7 tháng 8 2020

b/\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)

\(\Leftrightarrow x^2-10x+25+x^2-3^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)

\(\Leftrightarrow14x=14\Leftrightarrow x=1\)

c/\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)=0\)

\(\Leftrightarrow4x^2+12x+9+4x^2-12x+9-8x^2+18=0\)

\(\Leftrightarrow0x=-36\Leftrightarrow x=0\)

a/\(\left(2x+1\right).\left(1-2x\right)+\left(2x-1\right)^2=22\Leftrightarrow2x-4x^2+1-2x+4x^2-4x+1=22\Leftrightarrow-4x=20\Leftrightarrow x=-5\)

4 tháng 7 2018

a) \(\left(x+3\right)^2-\left(2x+1\right).\left(2x-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-\left(4x^2-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-4x^2+1=22\)
\(\Leftrightarrow-3x^2+6x-12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\)(vô lý)

b)   \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25-46=0\)
\(\Leftrightarrow40x-80=0\)
\(\Leftrightarrow x=2\)

25 tháng 8 2019

b) ( 2x+3)^2 - (2x+1)(2x-1) =22

=> 4x2+12x+9-4x2+1=22

=> 12x=12

=>x=1

c) (4x+3)(4x-3) -(4x-5)^2 =16

=>16x2-9-16x2+40x-25=16

=>40x=50

=>x=4/5

25 tháng 8 2019

a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)

vậy...