Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^x\cdot2^2-2^x=96\)
\(2^x\cdot\left(4-1\right)=96\)
\(2^x=32=2^5\)
=> x = 5
b) \(\left(2x+1\right)^3=7^3\)
=> 2x +1 = 7
=> 2x = 6
=> x = 3
Vậy,..........
a. 2x+2 - 2x = 96
2x . 22 - 2x = 96
2x. (22 - 1) = 96
2x = 96 : 3
2x = 32
2x = 25
x = 5
b. (2x + 1)3 = 343
(2x + 1)3 = 73
2x + 1 = 7
2x = 7 - 1
x = 6 : 2
x = 3
2 x + 2 - 2x = 96
2x . 22 - 2x = 96
2x . ( 22 - 1 ) = 96
2x . (4 - 1 ) = 96
2x . 3 = 96
2x = 96 : 3
2x = 32
2x = 25
=> x = 5
Vậy x = 5
a) \(2^x+2^{x+1}=96\Leftrightarrow2^x+2\cdot2^x=96\Leftrightarrow2^x\cdot3=96\Leftrightarrow2^x=48\)
Không có x nguyên thỏa mãn.
b) \(3^{4x+4}=81\Leftrightarrow3^4\cdot3^x=3^4\Leftrightarrow3^x=1\Leftrightarrow x=0\)
\(3^{x+1}=9^x\)
\(\Leftrightarrow3^{x+1}=3^{2x}\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow x+1=x+x\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
\(2^{3x+2}=4^{x+5}\)
\(\Leftrightarrow2^{3x+2}=2^{2x+10}\)
\(\Leftrightarrow3x+2=2x+10\)
\(\Leftrightarrow3x=2x+8\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
\(2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x.2^2-2^x.1=96\)
\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\)
\(\Leftrightarrow2^x=\frac{96}{3}\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
\(a,2^x+2^{x+1}=96\)
\(\Rightarrow2^x+2^x.2=96\) \(\Rightarrow2^x\left(1+2\right)=96\)
\(\Rightarrow2^x.3=96\) \(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\Rightarrow x=5\)
\(b,3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\) (Vô lý)
Vậy \(x\in\varnothing\)
a/ \(2^x+2^{x+1}=96\)
\(2^x+2^x.2=96\)
\(2^x\cdot\left(2+1\right)=96\)
\(2^x=\frac{96}{3}=32\)
\(2^x=2^5\)
\(=>x=5\)
b/ \(3^{4x+4}=81^{x+3}\)
\(\Rightarrow3^{4x+4}-81^{x+3}=0\)
\(3^{4x}.3^4-3^{4x}\cdot81^3=0\)
\(3^{4x}\cdot\left(81-81^3\right)=0\)
\(3^{4x}=\frac{0}{81-81^3}\)
\(3^{4x}=0\Rightarrow x=0\)
a) 2x + 2x+1 = 96
=> 2x(1 + 2) = 96
=> 2x.3 = 96
=> 2x = 96 : 3
=> 2x = 32
=> 2x = 25
=. x = 5
\(2^{x+2}-2^x=96\)
\(\Rightarrow2^x.2^2-2^x=96\)
\(\Rightarrow2^x.\left(4-1\right)=96\)
\(\Rightarrow2^x.3=96\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)