Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
\(2x-3+3|x-1|=4x+1.\)
\(\Leftrightarrow3|x-1|=2x+4\)
*Với x < 1 ta có phương trình:
\(3\left(-x+1\right)=2x+4\)
\(\Leftrightarrow-3x+3=2x+4\)
\(\Leftrightarrow5x+1=0\)
\(\Leftrightarrow x=-\frac{1}{5}\)(TM)
*Với \(x\ge1\)ta có phương trình:
\(2x-3+3\left(x-1\right)=4x+1\)
\(\Leftrightarrow2x-3+3x-3=4x+1\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)(TM)
Vậy ............
a) Có: |2x - 1| + |2x - 5| = |2x - 1| + |5 - 2x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=\left|4\right|=4\)
Mà theo đề bài: |2x - 1| + |2x - 5| = |2x - 1| + |5 - 2x| = 4
\(\Rightarrow\begin{cases}2x-1\ge0\\2x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}2x\ge1\\2x\le5\end{cases}\)\(\Rightarrow1\le2x\le5\)
\(\Rightarrow\frac{1}{2}\le x\le\frac{5}{2}\)
Vậy \(\frac{1}{2}\le x\le\frac{5}{2}\) thỏa mãn đề bài
* Nếu \(x\le\frac{1}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=-\left(2x-1\right)-\left(2x-5\right)=4\)
\(\Rightarrow-2x+1-2x+5=4\)
\(\Rightarrow-4x+6=4\)
\(\Rightarrow x=\frac{1}{2}\) (chọn)
* Nếu \(\frac{1}{2}< x< \frac{5}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=2x-1-\left(2x-5\right)=4\) (luôn đúng)
* Nếu \(x\ge\frac{5}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=2x-1+2x-5=4\)
\(\Rightarrow4x-6=4\)
\(\Rightarrow x=\frac{5}{2}\) (chọn)
Vậy \(\frac{1}{2}\le x\le\frac{5}{2}\)
+) Xét \(\frac{2x+1}{5}\)= \(\frac{4y-5}{9}\)= \(\frac{2x+4y-4}{7}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow x=\frac{-1}{2}\)
+) Xét \(2x+4y-4\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+1+4y-4}{14}=\frac{2x+4y-4}{7x}\)
\(\Rightarrow14=7x\)
\(\Rightarrow x=2\)
Vậy \(x\in\left\{\frac{-1}{2};2\right\}\)
a: =>2x+5=4
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left(3x-4\right)^2\cdot\left[\left(3x-4\right)^2-1\right]=0\)
=>(3x-4)(3x-5)(3x-3)=0
hay \(x\in\left\{1;\dfrac{4}{3};\dfrac{5}{3}\right\}\)
c: \(\Leftrightarrow3^{x+1}=3^{2x}\)
=>2x=x+1
=>x=1
d: \(\Leftrightarrow2^{2x+3}=2^{2x-10}\)
=>2x+3=2x-10
=>0x=-13(vô lý)
a. (2x-1)4=81
=>(2x-1)4=34
=>2x-1=3
=>2x=3+1
=>2x=4
=>x=4:2
=>x=2
b.(x-1)5=-32
=>(x-1)5=(-2)5
=>x-1=-2
=>x=-2+1
=>x=-1
c.(2x-1)6=(2x-1)8
mà chỉ có: (-1)6=(-1)8; 06=08; 16=18
=> để (2x-1) \(\in\){-1;0;1} thì x \(\in\){0; 1/2; 1}