Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2x-1|=1,5
TH(1)2x-1=1,5
2x =1,5+1
2x =2,5
x =2,5 :2
x =1,25
TH(2) 2x-1=-1,5
2x =-1,5+1
2x =-0,5
x =-0,5:2
x =-0,25
các câu khác cứ tương tự bạn nhé
b) \(7,5-\left|5-2x\right|=-4,5\)
\(\left|5-2x\right|=7,5+4,7\)
\(\left|5-2x\right|=12\)
th1 :\(5-2x=12\)
\(2x=5-12\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
th2: \(5-2x=-12\)
\(2x=5+12\)
\(2x=17\)
\(x=17:2\)
\(x=8,5\)
c) \(-3+\left|x\right|=-1\)
\(\left|x\right|=-1+3\)
\(\left|x\right|=2\)
th1: \(x=-2\)
th2 : \(x=2\)
d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)
\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)
th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)
\(x=\dfrac{7}{3}-\dfrac{1}{2}\)
\(x=\dfrac{11}{6}\)
th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)
\(x=\dfrac{7}{3}+\dfrac{1}{6}\)
\(x=\dfrac{-5}{2}\)
e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{9}{14}\)
th1 :\(x+1=\dfrac{9}{14}\)
\(x=\dfrac{9}{14}-1\)
\(x=\dfrac{-5}{14}\)
th2 : \(x+1=\dfrac{-9}{14}\)
\(x=\dfrac{-9}{14}-1\)
\(x=\dfrac{-5}{14}\)
Dạng 1:
a) $4x+9=4x+\frac{9}{4}.4=4(x+\frac{9}{4}\Rightarrow$ Nghiệm là $-\frac{9}{4}$
b) $-5x+6=-5x+(-5).(-\frac{6}{5})=-5(x-\frac{6}{5})\Rightarrow$ Nghiệm là $\frac{6}{5}$
c) $7-2x=-2x+7=-2x+(-2).(-\frac{7}{2})=-2(x-\frac{7}{2})\Rightarrow$ Nghiệm là $\frac{7}{2}$
d) $2x+5=2x+2.\frac{5}{2}=2.(x+\frac{5}{2})\Rightarrow$ Nghiệm là $-\frac{5}{2}$
e) $2x+6=2x+2.3=2(x+3)\Rightarrow$ Nghiệm là -3
g) $3x-\frac{1}{4}=3x-3.(\frac{1}{12})=3(x-\frac{1}{12})\Rightarrow$ Nghiệm là $\frac{1}{12}$
h) $3x-9=3x-3.3=3(x-3)\Rightarrow$ Nghiệm là 3
k) $-3x-\frac{1}{2}=-3x-3.(\frac{1}{6})=-3(x+\frac{1}{6})\Rightarrow$ Nghiệm là $-\frac{1}{6}$
m) $-17x-34=-17x-17.2=-17(x+2)\Rightarrow$ Nghiệm là -2
n) $2x-1=2x+2.(-\frac{1}{2})=3(x-\frac{1}{2})\Rightarrow$ Nghiệm là $\frac{1}{2}$
q) $5-3x=-3x+5=-3x+(-3).(-\frac{5}{3})=-3(x-\frac{5}{3})\Rightarrow$ Nghiệm là $\frac{5}{3}$
p) $3x-6=3x+3.(-2)=3(x-2)\Rightarrow$ Nghiệm là 2
\(a,\frac{5}{x-2}=\frac{3}{2x+1}\)
=>\(5\left(2x+1\right)=3\left(x-2\right)\)
=>\(10x+5=3x-6\)
=>\(10x-3x=-6-5\)
=>\(7x=-11\)
=> \(x=-\frac{11}{7}\)
b,\(\frac{2x-3}{5}=\frac{x+2}{2}\)
=>\(2\left(2x-3\right)=5\left(x+2\right)\)
=>\(4x-6=5x+10\)
=>\(4x-5x=10+6\)
=>\(-x=16\)
=>\(x=-16\)
Chúc Bạn May Mắn
a: =>(3x+6)(x+5)<0
=>(x+2)(x+5)<0
=>-5<x<-2
b: \(\Leftrightarrow\dfrac{x+2}{x+1}>0\)
=>x>-1 hoặc x<-2
c: \(\Leftrightarrow\dfrac{x-1}{2x+5}-1>0\)
\(\Leftrightarrow\dfrac{x-1-2x-5}{2x+5}>0\)
\(\Leftrightarrow\dfrac{x+6}{2x+5}< 0\)
=>x>-5/2 hoặc x<-6
#)Giải :
a) \(\left(5x+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\Leftrightarrow5x+1=\frac{6}{7}\Leftrightarrow5x=-\frac{1}{7}\Leftrightarrow x=-\frac{1}{35}\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\Leftrightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\Leftrightarrow x=\frac{2}{3}\)
c) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\Leftrightarrow8x-1=5\Leftrightarrow8x=6\Leftrightarrow x=\frac{6}{8}\)
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\frac{6^2}{7^2}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\frac{6}{7}\)
\(5x=\frac{6}{7}-1\)
\(5x=\frac{6}{7}-\frac{7}{7}\)
\(5x=-\frac{1}{7}\)
\(x=-\frac{1}{7}\div5\)
\(x=-\frac{1}{7}\times\frac{1}{5}\)
\(x=-\frac{1}{35}\)
Vậy \(x=-\frac{1}{35}\)
Ta có
<br class="Apple-interchange-newline"><div></div>2x3y =−13
=><br class="Apple-interchange-newline"><div></div>-2x1 =3y3
Áp dụng tính chất dãy Tỉ số bằng nhau ,ta có
-2x/1= 3y/3 = (-2x+3y)/( 1+3) = 7/4
=> x= -7/8, y=7/4
Ta có x/5 = y/3
=> x^2/25 =y^2/ 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x^2 /25 = y^2/9 = (x^2 -y^2)/(25- 9)= 1/4
=> x = 5/2, y = 3/2 (x,y>0)
a. \(5^{4-x}+1=26\)
\(\Leftrightarrow5^{4-x}=26-1=25\)
\(\Leftrightarrow5^{4-x}=5^2\)
\(\Leftrightarrow4-x=2\)
\(\Leftrightarrow x=2\)
b. \(\left(\frac{2}{x}+1\right)^{2x}=5^{2x}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}+1=5\\\frac{2}{x}+1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=4\\\frac{2}{x}=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{3}\end{cases}}\)
c. \(\left(1-2x\right)^4-\left(1-2x\right)^6=0\)
\(\Leftrightarrow\left(1-2x\right)^4.\left[1-\left(1-2x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(1-2x\right)^4=0\\1-\left(1-2x\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=0\\\left(1-2x\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=0hoac2x=-2\end{cases}}\)
\(\Leftrightarrow x=\frac{1}{2},x=0,x=-1\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a) Tìm \(n\in N\), biết:
\(3.5^{2n+1}-3.25^n=300\)
b) Tìm x để:
\(f\left(x\right)=6x^{^{ }4}-2x^3+5=5\)
a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)
\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)
\(15\cdot25^n-3\cdot25^n=300\)
\(25^n\cdot12=300\)
\(25^n=25\)
\(\Rightarrow n=1\)
b)\(f\left(x\right)=6x^4-2x^3+5=5\)
\(6x^4-2x^3=0\)
\(6x^4=2x^3\)
\(3x^4=x^3\)
\(3x^4-x^3=0\)
\(x^3\left(3x-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc 3x-1=0
\(\Rightarrow x=0,3x=1\)
\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))
Vậy x=0
TH1: \(x< \dfrac{1}{2}\)
Phương trình sẽ trở thành:
\(1-2x+5-2x=6\)
=>6-4x=6
=>4x=0
=>x=0(nhận)
TH2: \(\dfrac{1}{2}< =x< \dfrac{5}{2}\)
Phương trình sẽ trở thành:
\(2x-1+5-2x=6\)
=>4=6(vô lý)
=>\(x\in\varnothing\)
TH3: \(x>=\dfrac{5}{2}\)
Phương trình sẽ trở thành:
2x-1+2x-5=6
=>4x=12
=>x=3(nhận)