![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề tí nha: \(8\left(2009-x\right)^2=25-y^2\)
Đặt \(t=x-2009\left(ĐK:t\in Z\right)\)
\(\Rightarrow8t^2=25-y^2\Rightarrow y^2\le25\)
Xét trường hợp 1: \(y^2=0\Rightarrow t^2=\frac{25}{8}\)( loại )
Xét trường hợp 2: \(y^2=4\Rightarrow t^2=\frac{21}{8}\)( loại )
Xét trường hợp 3: \(y^2=9\Rightarrow t^2=2\)( loại )
Xét trường hợp 4: \(y^2=16\Rightarrow t^2=\frac{9}{8}\)( loại )
Xét trường hợp 5: \(y^2=25\Rightarrow t^2=0\)( nhận ) \(\Rightarrow y=5;-5;x=2009\)
Vậy phương trình có nghiệm nguyên là ( 2009 , -5 ) ; ( 2009 , 5 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )
⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009
⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\)\(\left|x-2009\right|=2009-x\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2009=x-2009\\x-2009=2009-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=x\\x=2009\end{cases}}}\)
Vậy \(x=2009\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0
Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)
=> x=2009; y=2010; z=2011
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
vì | 1 - 2x | \(\ge\)0 \(\Rightarrow\)| 1 - 2x | - 2009 \(\ge\)-2009
\(\Rightarrow\)GTNN của A là -2009 khi | 1 - 2x | = 0 hay x = \(\frac{1}{2}\)
2)
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow x=\left(-3\right).2=-6;y=\left(-3\right).5=-15\)
3)
2225 = ( 23 )75 = 875
3150 = ( 32 )75 = 975
vì 875 < 975 nên 2225 < 3150
/x-2009/=2009-x\(\Rightarrow\)x-2009< hoạc = 0\(\Rightarrow\)x< hoạc = 2009
\(2009-\left|x-2009\right|=x\Rightarrow\left|x-2009\right|=2009-x\)
ĐK: \(x\ge2009\)
\(\Rightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=2009\left(tm\right)\\0=0\left(loại\right)\end{cases}}}\)