Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\left(đk:x>2\right)\)
đặt
\(A=1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\)
\(\left(x-1\right)^2A=\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\)
\(\left(x-1\right)^2A-A=\left[\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\right]-\left[1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\right]\)
\(\left[\left(x-1\right)^2-1\right]A=\left(x-1\right)^{2022}-1\)
\(A=\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}\)
\(=>\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\\ =>\left(x-1\right)^{2022}-1=17^{2022}-1\\ =>\left(x-1\right)^{2022}=17^{2022}\\ =>x-1=17\\ =>x=18\left(tm\right)\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
(x-1)2020=(x-1)2022
=>(x-1)2020-(x-1)2022=0
=>(x-1)2020-(x-1)2020.(x-1)2=0
=>(x-1)2020(1-(x-1)2=0
=>(x-1)2020=0 hoặc 1-(x-1)2=0
=>x=1 hoặc x=2.
Bài 2
a,2105 và 545
2105=(27)15=12815
545=(53)15=12515
Vì 12815>12515 nên 2105>545.
b,
554 và 381
554=(56)9=156259
381=(39)9=196839
Vì 156259<196839 nên 554<381
Bài 1 :
\(\left(x-1\right)^{2020}=\left(x-1\right)^{2022}\)
\(\Rightarrow\left(x-1\right)^{2022}-\left(x-1\right)^{2020}=0\)
\(\Rightarrow\left(x-1\right)^{2020}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)
\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)
\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)
\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)
\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)
\(x-2018\text{=}0\)
\(x\text{=}2018\)
\(Vậy...\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^{2008}=\left[\left(x-1\right)^{1004}\right]^2\ge0\\\left(y-2\right)^{2020}=\left[\left(y-2\right)^{1010}\right]^2\ge0\\\left(x+y-z\right)^{2022}=\left[\left(x+y-z\right)^{1011}\right]^2\ge0\end{cases}}\)
=> Tổng của 3 số dương =0 khi và chỉ khi cả 3 số đều bằng 0
=> \(\hept{\begin{cases}\left[\left(x-1\right)^{1004}\right]^2=0\\\left[\left(y-2\right)^{1010}\right]^2=0\\\left[\left(x+y-z\right)^{1011}\right]^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-z=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Đáp số: x=1, y=2, z=3
refer
https://lazi.vn/edu/exercise/634984/tim-x-biet-x-1-2019-x-2-2020-x-3-2021x-4-2022
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)
1/\(-2020+23+x=-2020\\ \Leftrightarrow23+x=-2020+2020\\ \Leftrightarrow23+x=0\\ \Leftrightarrow x=0-23\\ \Leftrightarrow x=-23\)
Vậy...
2/\(2x-35=25\\ \Leftrightarrow2x=60\\ \Leftrightarrow x=30\)
Vậy...
3/\(3x+17=26\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\)
Vây...
4/\(\left|\text{x}-1\right|=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy...
5/ \(-17.\left|x\right|=-34\\ \Leftrightarrow\left|x\right|=2\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
VẬy...
ai biết làm ko