Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/21+1/28+1/36+...+2/[x.(x+1)]=2/9
=>2/42+2/56+2/72+...+2/[x.(x+1)]=2/9
=>2.(1/42+1/56+1/72+...+1/[x.(x+1)])=2/9
=>2.(1/6-1/7+1/7-1/8+1/8-1/9+...+1/x-1/(x+1))=2/9
=>1/6-1/(x+1)=1/9
=>1/(x+1)=1/18
=>x+1=18
=>x=17
Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{21.2}+\frac{1}{28.2}+\frac{1}{36.2}...+\frac{2}{x.\left(x+1\right).2}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6.4}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}-\frac{1}{x+1}\)
\(\Rightarrow A=\left(\frac{1}{6}-\frac{1}{x+1}\right):\frac{1}{2}\)
Theo bài ra ta có :
\(\left(\frac{1}{6}-\frac{1}{x+1}\right):\frac{1}{2}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}.\frac{1}{2}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{3}{18}-\frac{2}{18}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=18-1\)
\(\Rightarrow x=17\)
Vậy x = 17
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+\frac{2}{8\cdot9}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}\div2\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\Rightarrow x=18-1\Rightarrow x=17\)
\(1,x.\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}-x=-5\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
\(4,24:\left(3x-2\right)=-3\)
\(3x-2=-8\)
\(3x=-6\)
\(x=-2\)
\(5,-45:5\left(-3-2x\right)=3\)
\(5\left(-3-2x\right)=-15\)
\(-3-2x=-3\)
\(2x=0\)
\(x=0\)
\(6,x.\left(2+x\right)\left(7-x\right)=0\)
\(x=0\) hoặc \(\orbr{\begin{cases}2+x=0\\7-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}}\)
\(7,\left(x-1\right)\left(x+2\right)\left(-x+3\right)=0\)
TH1: x-1=0 TH2 : x+2=0 TH3: -x+3=0
x=1 x=-2 -x=-3 => x=3
Tìm x,y thuộc Z biết:
a) x.y=3
b)x (y-1)=7
c) (x-1). (y+2)=9
d)3xy+3-x-1=4
Giúp mk với,mk tick cho 3 tick
a) x,y nguyên nên x, y thuộc ước nguyên của 3
ta có bảng sau
x | 1 | -1 | 3 | -3 |
y | 3 | -3 | 1 | -1 |
b) x,y nguyên nên x, y-1 thuộc ước nguyên của 7
ta có bảng sau
x | 1 | -1 | 7 | -7 |
y-1 | 7 | -7 | 1 | -1 |
y | 8 | -6 | 2 | 0 |
c)
a) x,y nguyên nên x-1, y+2 thuộc ước nguyên của 9
ta có bảng sau
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
y-1 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
y | 10 | -8 | 4 | -2 | 2 | 0 |
d) 3xy - x = 2
x. (3y - 1) = 2
Vì x,y nguyên nên x, 3y-1 thuộc ước nguyên của 2
ta có bảng sau
x | 1 | -1 | 2 | -2 |
3y-1 | 2 | -2 | 1 | -1 |
y | 1 | Loại | Loại | 0 |
Tự kết luận nhé
Đề sai nha
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
Tự làm tiếp nha!
Đúng ời. đề mk viết lộn chút xíu