\(x+\frac{1}{x+\frac{1}{x+\frac{1}{x}}}=\frac{29}{12}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)

Nên x + 1 = 0 => x = -1

b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)

\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)

\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)

Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)

Nên x  +15 = 0 => x = -15

29 tháng 6 2018

a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1

29 tháng 3 2019

a) \(\frac{29}{30}\)- (\(\frac{13}{23}\)+X)=\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{29}{30}\)-\(\frac{7}{69}\)

\(\frac{13}{23}\)+X=\(\frac{199}{230}\)

X=\(\frac{199}{230}\)-\(\frac{13}{23}\)

X=\(\frac{3}{10}\)

b)1/2+1/6+1/12+...+1/x(x+1)=2011/2012

=>1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2011/2012

=>1-1/2+1/2-1/3+1/3+1/4+...+1/x+1/x+1=2011/2012

=>1-1/x+1=2011/2012

=>1/x+1=1-2011-2012

=>1/x+1=2012/2012-2011/2012

1/x+1=1/2012

=>x+1=2012

=>x=2011

29 tháng 3 2019

a) 3/10

6 tháng 4 2018

Tìm x biết:

\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)

\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)

\(\frac{x}{3}=\frac{5}{6}\)

\(x=\frac{5}{6}.3\)

\(x=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{199}{230}\)

\(x=\frac{199}{230}-\frac{13}{23}\)

\(x=\frac{3}{10}\)

Vậy \(x=\frac{3}{10}\)

Bài 2: tính

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{5}-\frac{1}{11}\)

\(=\frac{6}{55}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

6 tháng 4 2018

Bài 2:

1/30+1/42+1/56+1/72+1/90+1/110

=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11

=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11

=1/5-1/11=6/55

b)1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50

=49/50

4 tháng 3 2015

a x=1/4                                                       b x= 3/10

2 tháng 2 2019

\(a)\frac{62}{7}\cdot x=\frac{29}{9}\div\frac{3}{56}\)

\(\Rightarrow\frac{62}{7}\cdot x=\frac{29}{9}\cdot\frac{56}{3}\)

\(\Rightarrow\frac{62}{7}\cdot x=\frac{1624}{27}\)

\(\Rightarrow x=\frac{1624}{27}\div\frac{62}{7}\)

\(\Rightarrow x=\frac{1624}{27}\cdot\frac{7}{62}\)

\(\Rightarrow x=\frac{11368}{1674}=\frac{5684}{837}\)

Rút gọn thử đi

30 tháng 3 2018

a) \(x+\frac{7}{12}=\frac{17}{18}-\frac{1}{9}\)

\(\Rightarrow x+\frac{7}{12}=\frac{5}{6}\)

\(\Rightarrow x=\frac{5}{6}-\frac{7}{12}\)

\(\Rightarrow x=\frac{1}{4}\)

b) \(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\Rightarrow\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)

\(\Rightarrow\frac{13}{23}+x=\frac{199}{230}\)

\(\Rightarrow x=\frac{199}{230}-\frac{13}{23}\)

\(\Rightarrow x=\frac{3}{10}\)

30 tháng 3 2018

a)\(x+\frac{7}{12}=\frac{17}{18}-\frac{1}{9}\)

\(x+\frac{7}{12}=\frac{5}{6}\)

\(x=\frac{5}{6}-\frac{7}{12}\)

\(x=\frac{1}{4}\)

b)\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\left(\frac{13}{23}+x\right)=\frac{29}{30}-\frac{7}{69}\)

\(\left(\frac{13}{23}+x\right)=\frac{199}{230}\)\(x=\frac{199}{230}-\frac{13}{23}\)

\(x=\frac{3}{10}\)

13 tháng 4 2019

\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)

\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)

\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)

\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)

\(\Leftrightarrow x=\frac{6}{11}\)

13 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x+1=100\)

\(\Leftrightarrow x=100-1\)

\(\Leftrightarrow x=99\)

6 tháng 3 2017

Ta có : \(\frac{x+\frac{x}{5}}{5}=\frac{x-\frac{1}{5}}{12}\)  

<=> \(12x+\frac{12x}{5}=5x-1\)

<=> \(\frac{60x}{5}+\frac{12x}{5}=5x-1\)

\(\Leftrightarrow\frac{72x}{5}=5x-1\)

\(\Leftrightarrow\frac{72x}{5}-5x=1\)

Tự tính

\(\Rightarrow\frac{47x}{5}=1\)

6 tháng 8 2015

a, \(\frac{62}{7}.x=\frac{29}{9}.\frac{56}{3}=\frac{1624}{27}\)

\(x=\frac{1624}{27}:\frac{62}{7}=\frac{1624}{27}.\frac{7}{62}=6\frac{662}{837}\)

b, \(\frac{1}{50}:x=\frac{7}{35}+\frac{5}{35}=\frac{12}{35}\)

\(x=\frac{12}{35}.\frac{1}{50}=\frac{6}{875}\)

 

6 tháng 8 2015

\(\frac{62}{7}.x=\frac{29}{9}:\frac{3}{56}\Leftrightarrow\frac{62}{7}.x=\frac{1624}{27};x=\frac{5684}{837}\)