K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

(x+3)(-5x-9+3x+5)=0

(x+3)(-2x-4)=0

x=-3; x=-2

5 tháng 8 2015

Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x = y = 1/2.

GTNN của A là 6.

\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)

Dấu "=" xảy ra khi x = y = 1/2.

Vậy GTNN của B là 8063.

 

10 tháng 5 2016

=> 72 - 20x - 36x - 84 = 30x - 240 - 6x + 84

=> (72 - 84 )  - (20x + 36x ) = (30x - 6x ) - 240 + 84

=> -12 - 56x = 24x - 156

=> -12 + 156 = 24x + 56x 

=> 144 = 80x

=> x = 144  : 80

=> x = 9/5

10 tháng 5 2016

=> 72 - 20x - 36x - 84 = 30x - 240 - 6x + 84

=> (72 - 84 )  - (20x + 36x ) = (30x - 6x ) - 240 + 84

=> -12 - 56x = 24x - 156

=> -12 + 156 = 24x + 56x 

=> 144 = 80x

=> x = 144  : 80

=> x = 9/5

6 tháng 10 2019

1) \(\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=\left(x^2-8x+16\right)+1\)

\(=\left(x-4\right)^2+1\)

Vì \(\left(x-4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)

Vậy....

2) tương tự

6 tháng 10 2019

\(1.\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=x^2-2.4x+16+1\)

\(=\left(x-4\right)^2+1\)

Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)

hay \(\left(x-3\right)\left(x-5\right)+2>0\)

7 tháng 5 2017

Đúng rồi bạn ạ

8 tháng 5 2017

Em làm vậy chưa đúng nhé. Ta cần làm như sau:

\(\frac{x-5}{2x+2}-1>0\Leftrightarrow\frac{x-5-\left(2x+2\right)}{2x+2}>0\)

\(\Leftrightarrow\frac{-x-7}{2x+2}>0\)

Tới đây có thể lập bảng xét dấu hoặc xét trường hợp. Ở đây cô xét trường hợp :

Với \(x\le-7:-x-7\ge0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}\le0\left(l\right)\) 

Với \(-7< x< -1:-x-7< 0;2x+2< 0\Rightarrow\frac{-x-7}{2x+2}>0\left(n\right)\)

Với \(x>-1:-x-7< 0;2x+2>0\Rightarrow\frac{-x-7}{2x+2}< 0\left(l\right)\)

Vậy \(-7< x< -1\)

1 tháng 9 2023

\(2x\left(x-1\right)-\left(1-x\right)^2=0\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Để giải phương trình này, chúng ta có thể bắt đầu bằng cách mở ngoặc và rút gọn các thành phần. Hãy làm theo các bước sau: 1. Mở ngoặc: 2x(x-1) - (1-x)^2 = 0 => 2x^2 - 2x - (1 - 2x + x^2) = 0 2. Rút gọn các thành phần: 2x^2 - 2x - 1 + 2x - x^2 = 0 => x^2 - 1 = 0 3. Đưa phương trình về dạng chuẩn: x^2 = 1 4. Giải phương trình: - Nếu x^2 = 1, thì x có thể là 1 hoặc -1. Vậy, phương trình có hai nghiệm là x = 1 và x = -1.

7 tháng 9 2019

a) \(\left(x+a\right)\left(x^2+bx+16\right)\)

\(=x\left(x^2+bx+16\right)+a\left(x^2+bx+16\right)\)

\(=x^3+bx^2+16x+ax^2+abx+16a\)

\(=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\)

b) Ta có: \(\hept{\begin{cases}M=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\\N=x^3-64\end{cases}}\)

Cân bằng hệ số: \(\hept{\begin{cases}a+b=0\\16+ab=0\\16a=-64\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-4\\4\end{cases}}\)