Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(8xy^2+24x^2y-32x^3y^2=8xy\left(y+3x-4x^2y\right)\)
b) \(x^2-16x-y^2+64=\left(x-8\right)^2-y^2=\left(x-8-y\right)\left(x-8+y\right)\)
Bài 2:
\(\left(x-4\right)^2-\left(12x+x^2\right)=6\)
\(\Rightarrow x^2-8x+16-12x-x^2=6\)
\(\Rightarrow20x=10\Rightarrow x=\dfrac{1}{2}\)
\(1,\\ =8xy\left(y+3x-4x^2y\right)\\ =\left(x-8\right)^2-y^2=\left(x-y-8\right)\left(x+y-8\right)\)
\(2,\Leftrightarrow x^2-8x+16-12x-x^2=6\\ \Leftrightarrow-20x=-10\\ \Leftrightarrow x=2\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
a, 3x.(12x-4)-9x(4x-3)=30
=>36x2-12x-36x2+27x=30
=>5x=30
=> x=6
b,x.(5-2x)+2x.(x-1)=15
=> 5x-2x2+2x2-2x=15
=>3x=15
=>x=5
tk mk nha bn
*****Chúc bạn học giỏi*****
a) 3x . (12x - 4) - 9x(4x - 3) = 30
3x . 12x - 12x - 9x.4x + 27x = 30
(3x . 12x - 9x . 4x) - (12x - 27x) = 30
(36x2 -36x2) + 15x = 30
=> 15x = 30
=> x = 30 : 15
=> x = 2
P(x) = 2x3 – 5x2 + 8x – 3
Nghiệm hữu tỷ nếu có của đa thức P(x) trên là:
(– 1); 1; (–1/2); 1/2 ; (–3/2); 3/2 ; –3…
Sau khi kiểm tra ta thấy x = 1/2 là nghiệm nên đa thức chứa nhân tử ( x – 1/2) hay (2x – 1). Do đó ta tìm cách tách các hạng tử của đa thức để xuất hiện nhân tử chung (2x – 1).
2x3 - 5x2 + 8x – 3 = 2x3- x2 – 4x2 + 2x + 6x – 3
= x2( 2x – 1) – 2x( 2x – 1) + 3(2x – 1)
= ( 2x – 1)(x2 – 2x + 3).
Hoặc chia P(x) cho (x – 1) ta được thương đúng là: x2 – 2x + 3
P(x) = 2x3 – 5x2 + 8x – 3 = ( 2x – 1)(x2 – 2x + 3)
Vậy P(x) = 2x3 – 5x2 + 8x – 3 = ( 2x – 1)(x2 – 2x + 3)
a) 3x(12x – 4) – 9x(4x – 3) = 30
36x2 – 12x – 36x2 + 27x = 30
15x = 30
x = 2
b) x(5 – 2x) + 2x(x – 1) = 15
5x – 2x2 + 2x2 – 2x = 15
3x = 15
x = 5
a) 3x(12x – 4) – 9x(4x – 3) = 30
36x2 – 12x – 36x2 + 27x = 30
15x = 30 x = 2
b) x(5 – 2x) + 2x(x – 1) = 15
5x – 2x2 + 2x2 – 2x = 15
3x = 15
x = 5
a) \(3x\left(12x-4\right)-9x\left(4x-3\right)=0\)
\(\Leftrightarrow3x\left(12x-4-12x+9\right)=0\)
\(\Leftrightarrow3x\cdot5=0\)
\(\Leftrightarrow x=0\)
b) \(x\left(5-2x\right)+2x\left(x-1\right)=15\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=15\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
a) 3x(12-4)-9x(4x-3)=0
=> 3x(12x-4-12x+9)=0
=>3x .5=0
=>x-0
b) 5x-2x^2+2x^2-2x=15
=>5x-2x=15
=>3x=15
=>x=5