Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^{13}-\left(8x^{12}-8x^{11}+8x^{10}-8x^9+.....+8x^2-8x^1\right)+8\)
Đặt \(B=8x^{12}-8x^{11}+8x^{10}-....+8x^2-8x^1\)
\(B=8.\left(x^{12}-x^{11}+x^{10}-x^9+....+x^2-x^1\right)\)
Đặt \(C=x^{12}-x^{11}+x^{10}-x^9+...+x^2-x\)
Suy ra \(C.x=x^{13}-x^{12}+x^{11}-x^{10}+.....+x^3-x^2\)
Nên \(C.x-C=x^{13}-x\)hay \(C.\left(x-1\right)=x^{13}-x\)
Khi đó \(C=\frac{x^{13}-x}{x-1}\)nên\(B=8.\frac{x^{13}-x}{x-1}\)
Từ đó tính tương tự nha , cách làm thì có thể sai những em vẫn cố gắng giúp , ai có cách hay hơn thì giải nhé
đặt \(\sqrt{ }x^2+8x+8=k\), điều kiện k>=0
thay vào ta được \(x^2+8x+8+4\)-2\(\sqrt{x^2+8x+8}\)=3 <=>k2+4-2k=3 <=>k2-2k+1=0 <=>k=1(thỏa mãn k>=0)
=>\(\sqrt{x^2+8x+8}\)=1 <=> x2+8x+8=1 <=>x2+8x+7=0 <=> x=-1,x=-7
\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)
\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2.\frac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\) ( là nghiệm ) . Và ta xét PT \(\frac{2}{\sqrt{x^2+8x+8}+1}=1\)
\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy PT trên là : \(x=-1;x=-7\)
Chúc bạn học tốt !!!
1) \(-1\le x\le3\) \(\Rightarrow\) \(x+1\ge0;\) \(x-3\le0\)
\(\Rightarrow\)\(\left|x+1\right|=x+1;\) \(\left|x-3\right|=3-x\)
Phương trình trở thành: \(x+1-\left(3-x\right)=x+12\)
\(\Leftrightarrow\)\(x+1-3+x=x+12\)
\(\Leftrightarrow\) \(2x-2=x+12\)
\(\Leftrightarrow\) \(x=14\) (loại)
Vậy pt vô nghiệm
2) \(x^2+8>0\) \(\forall x\)
\(\Rightarrow\)\(\left|x^2+8\right|=x^2+8\)
Nếu \(x^2-8x< 0\)\(\Leftrightarrow\)\(x\left(x-8\right)< 0\)\(\Leftrightarrow\)\(0< x< 8\)
thì \(\left|x^2-8x\right|=8x-x^2\)
Khi đó phương trình trở thành: \(8x-x^2=x^2+8\)
\(\Leftrightarrow\)\(2x^2-8x+8=0\)
\(\Leftrightarrow\) \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(x=2\) (thỏa mãn)
Nếu \(x^2-8x\ge0\) \(\Leftrightarrow\) \(x\left(x-8\right)\ge0\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge8\\x\le0\end{cases}}\)
thì \(\left|x^2-8x\right|=x^2-8x\)
Khi đó phương trình trở thành: \(x^2-8x=x^2+8\)
\(\Leftrightarrow\)\(-8x=8\)
\(\Leftrightarrow\) \(x=-1\) (thỏa mãn)
Vậy pt có tập nghiệm \(S=\left\{-1;2\right\}\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
Với \(x=7\) thì \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)
\(=-x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)
\(=x^{11}-8x^{10}+...-8x^2+8x+8=...=x+8=15\)
Ta đặt P= \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)=\(x^{13}-8\left(x^{12}-x^{11}+x^{10}-...+x^2-x\right)+8\)
Đặt \(A=x^{12}-x^{11}+x^{10}-...+x^2-x\)(1)
=> \(A\cdot x=x^{13}-x^{12}+x^{11}-...+x^3-x^2\)(2)
Lấy (1)+(2) => \(A\left(x+1\right)=x^{13}-x\)
<=> \(A=\frac{x^{13}-x}{x+1}\)
Thay x=7 ta được A= \(\frac{7^{13}-7}{8}\)
=>P=\(7^{13}-8\cdot\frac{7^{13}-7}{8}+8\)=\(15\)
\(x\left(x^2+x+1\right)=8\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x-8\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\end{matrix}\right.\)