K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3+\left(1+x\right)^3-\left(2x+1\right)\left(x+1\right)=0\)

=>\(\left(x+x+1\right)\left[x^2-x\left(x+1\right)+\left(x+1\right)^2\right]-\left(2x+1\right)\left(x+1\right)=0\)

=>\(\left(2x+1\right)\left(x^2-x^2-x+x^2+2x+1-x-1\right)=0\)

=>\(\left(2x+1\right)\left(x^2\right)=0\)

=>\(\left[{}\begin{matrix}x^2=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 9 2020

a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)

\(\Leftrightarrow-x^3+5x^2-5x=0\)

\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)

5 tháng 9 2020

a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)

\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)

\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)

=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)

b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)

\(\Leftrightarrow-12=0\left(vn\right)\)

c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)

\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)

\(\Leftrightarrow2x=15\)

\(\Rightarrow x=\frac{15}{2}\)

28 tháng 7 2015

1) (2x-1)(x+3)(2-x)=0

=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0

=>x=1/2 hoặc x=-3 hoặc x=2

2)x^3 + x^2 + x + 1 = 0

=>.x^2(x+1)+(x+1)=0

=>(x^2+1)(x+1)=0

=>x^2+1=0 hoặc x+1=0 

=>                      x =-1

3) 2x(x-3)+5(x-3) =0    

=>(2x+5)(x-3)=0

=>2x+5=0 hoặc x-3=0

=>x=-5/2 hoặc x=3

4)x(2x-7)-(4x-14)=0

=> (x-2)(2x-7)=0

=> x-2 =0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

5)2x^3+3x^2+2x+3=0

=>x^2(2x+3)+2x+3=0

=>(x^2+1)(2x+3)=0

=>x^2+1=0 hoặc 2x+3=0

=>                      x =-3/2

19 tháng 2 2017

x = 3/2 đó mình chắc chắn 100 %

19 tháng 2 2021

\(a,\left(2x-1\right)^2-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-3\right)=0\)

\(\Leftrightarrow-4\left(2x-1\right)=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(b,\left(x+5\right)\left(x-2\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2+3x-10\right)-\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2+3x-10-x^2+9=0\)

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow3x=1\)

\(\Leftrightarrow x=\frac{1}{3}\)

19 tháng 2 2021

a) (2x - 1)2 - (2x + 3)(2x - 1) = 0

<=> (2x - 1)(2x - 1 - 2x - 3) = 0

<=> (2x - 1).(-4) = 0

<=> 2x - 1 = 0

<=> x = 1/2 

Vậy x = 1/2 là nghiệm phương trình

b) Ta có (x - 5)(x - 2) - (x - 3)(x + 3) = 0

<=> x2 - 7x + 10 - x2 + 9 = 0

<=> -7x + 19 = 0

<=> -7x = - 19

<=> x = 19/7

Vây x = 19/7 là nghiệm phương trình

12 tháng 8 2019

a) x(x-1) - (x+1)(x+2) = 0

    x\(^2\)- x -x\(^{^2}\)-2x +x+2=0

     -2x+2=0

      -2x=0+2

       -2x=2

         x=-1

Vậy x bằng -1

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

1 tháng 9 2020

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

1 tháng 9 2020

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé ! 

15 tháng 7 2018

\(2x^2=x\)

\(\Rightarrow2x^2-x=0\)

\(x\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(x=0\)hoặc \(x=\frac{1}{2}\)

\(x^3=x^5\)

\(\Rightarrow x^5-x^3=0\)

\(x^3.\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy \(x=0\)hoặc \(x=1\)

\(x^2.\left(x+1\right)+2x\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2+2x\right)=0\)

\(x.\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)hoặc \(x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)hoặc \(x=-2\)

Vậy \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\) hoặc \(x=-2\)

\(x.\left(2x-3\right)-2\left(3-2x\right)=0\)

\(x.\left(2x-3\right)+2.\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}}\)

Vậy \(x=\frac{3}{2}\)hoặc \(x=-2\)

15 tháng 7 2018

\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)

\(S\left\{0;\frac{1}{2}\right\}\)

\(d)x^3-x^5=0\Leftrightarrow x^3\left(1-x^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{1}\end{cases}}\)

\(S=\left\{0;\pm\sqrt{1}\right\}\)

các câu sau tương tự nha bn

8 tháng 10 2020

Ghép các dòng sau để hoàn thành những nhận xét về bài ca dao số 2:

Cụm từ "Rủ nhau"

thể hiện sự gần gũi, những người có cùng chung sở thích.

Cách tả cảnh của bài ca dao

cảm xúc thân thuộc như máu thịt và sự thiêng liêng của những yếu tố văn hóa, lịch sử.

Cảm xúc được gợi lên từ cảnh

liệt kê những địa danh nổi bật cho thấy quê hương giàu đẹp, phong phú.

Câu hỏi kết thúc bài thơ

gợi nhắc công lao của cha ông và nhắn nhủ sự biết ơn, trách nhiệm của thế hệ sau xây dựng cho đất nước giàu đẹp.

Ghép các dòng sau để hoàn thành những nhận xét về bài ca dao số 2:

Cụm từ "Rủ nhau"

thể hiện sự gần gũi, những người có cùng chung sở thích.

Cách tả cảnh của bài ca dao

cảm xúc thân thuộc như máu thịt và sự thiêng liêng của những yếu tố văn hóa, lịch sử.

Cảm xúc được gợi lên từ cảnh

liệt kê những địa danh nổi bật cho thấy quê hương giàu đẹp, phong phú.

Câu hỏi kết thúc bài thơ

gợi nhắc công lao của cha ông và nhắn nhủ sự biết ơn, trách nhiệm của thế hệ sau xây dựng cho đất nước giàu đẹp.

8 tháng 10 2020

1) \(4x\left(2x-1\right)+x\left(3-4x\right)-6=0\)

\(\Leftrightarrow8x^2-4x+3x-4x^2-6=0\)

\(\Leftrightarrow4x^2-x-6=0\)

\(\Leftrightarrow\left(x-\frac{1+\sqrt{97}}{8}\right)\left(x-\frac{1-\sqrt{97}}{8}\right)=0\)

\(\Leftrightarrow x=\frac{1\pm\sqrt{97}}{8}\)

2) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10-6=0\)

\(\Leftrightarrow2x=-10\)

\(\Rightarrow x=-5\)

2 tháng 11 2018

\(x^2-3x+2.\left(x-3\right)=0\)

\(x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(x.\left(x-3\right)-3x+9=0\)

\(x.\left(x-3\right)-3.\left(x-3\right)=0\)

\(\left(x-3\right)^2=0=>x=3\)

2 tháng 11 2018

a,\(x^2-3x+2\left(x-3\right)=0.\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^