
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, 3x 3 - 3x = 0
=> 3x ( x 2 - 1 ) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
b, x ( x - 2 ) + ( x - 2 ) = 0
=> ( x - 2 ) ( x + 1 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
c, 5x ( x - 2000 ) - x + 2000 = 0
=> ( x - 2000 ) ( 5x - 1 ) = 0
=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)

a) (x-3)(x+3)-(x-1)^2=0
=> (x^2-9)-(x^2-2x+1)=0
=>x^2-9-x^2+2x-1=0
=>(x^2-x^2)-9-1+2x=0
=>-10+2x=0
=>-2.(-5-x)=0
=>-5-x=0
=>-x=0+5
=>x=-5
vậy x=-5
b) x^3-3x^2+3x-1=0
=>(x-1)^3=0
=>x-1=0
=>x=0+1
=>x=1
vậy x=1
c) 4x^2-28x=0
=>4x.(x-7)=0
=> 2 TH
* 4x=0=>x=0
*x-7=0=>x=0+7=>x=7
vậy x=0 hoặc x=7

1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)

a, <=> x.(x-3)+5.(x-3) = 0
<=> (x-3).(x+5) = 0
<=> x-3=0 hoặc x+5=0
<=> x=3 hoặc x=-5
Vậy ........
b, ĐKXĐ : x khác 1 và 2
pt <=> x^2-1 = 0
<=> (x-1).(x+1) = 0
<=> x-1 = 0 hoặc x+1 = 0
<=> x=-1 ( vì x khác 1 và 2 )
Vậy x=-1
k mk nha

x3 + 3x2 + 3x + 1 = 0
<=> x3 + 3x2.1 + 3.x.12 + 13 = 0
<=> (x + 1)3 = 0
<=> x + 1 = 0
<=> x = 0 - 1
<=> x = -1
=> x = -1

Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0

a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)

x3 + 5x2 + 3x - 9 = 0
<=> x3 + 3x2 + 2x2 + 6x + 3x - 9 = 0
<=> x2(x + 3) + 2x(x + 3) - 3(x + 3) = 0
<=> (x + 3)(x2 + 2x - 3) = 0
<=> (x - 1)(x + 3)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\\left(x+3\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy ...
Bài này bạn phân tích thành nhân tử nhé :
<=> x^3+3x^2+2x^2+6x-3x-9=0
<=> x^2(x+3)+2x(x+3)-3(x+3)=0
<=> (x+3)(x^2+2x-3)=0
<=>(x-1)(x+3)^2=0
<=> x - 1 = 0 ; x + 3 =0
<=> x = 1 ; x = -3

a, (3x+2)(2x+9) - (x+2)(6x+1) = (x+1)-(x-6) b, 3(2x-1)(3x-1) - (2x-3)(9x-1) = 0
=> 6x2+4x+27x+18-6x2-12x-x-2 = x+1-x+6 => 18x2 -9x-6x+3-18x2+27x+2x-3 = 0
=> 18x+16 = -5 => 14x = 0
=> 18x = -5-16 => x = 0
=> 18x = -18
=> x = -1

x=2
Ta có: \(x^3-3x^2+3x-2=0\)
=>\(x^3-3x^2+3x-1-1=0\)
=>\(\left(x-1\right)^3=1\)
=>x-1=1
=>x=2