Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+3x2+3x+1-3x2-3x = 0
=> x3+1 = 0
=> x3 = 0-1
=> x3 = -1
=> x = -1
\(x^3+3x^2+3x+1-3x^2-3x=0\)0
\(\Leftrightarrow x^3+\left(3x^2-3x^2\right)+\left(3x-3x\right)+1=0\)
\(\Leftrightarrow x^3+1=0\)
\(\Leftrightarrow x^3=1\)
\(\Leftrightarrow x^3=1^3\)
\(\Rightarrow x=1\)
a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1
1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6
a) \(3x^3-12x=0\)
=> \(3x\left(x^2-4\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)
=> \(x^2\left(x-3\right)-4x+12=0\)
=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)
=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)
=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)
d) \(x^2-4x-21=0\)
=> \(x^2+3x-7x-21=0\)
=> \(x\left(x+3\right)-7\left(x+3\right)=0\)
=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (x + 1)(3x - 10) = 0
=> x = -1 hoặc x = 10/3
a) \(3x^3-12x=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)
\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)
Ta có : 3x3 - 12x = 0
=> 3x(x2 - 4) = 0
=> x(x - 2)(x + 2) = 0
=> \(x\in\left\{0;2;-2\right\}\)
b) x2(x - 3) + 12 - 4x = 0
=> x2(x - 3) - 4(x - 3) = 0
=> (x2 - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)
Vậy \(x\in\left\{-2;2;3\right\}\)
c) (3x - 1)2 - (2x - 3)2 = 0
=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0
=> (x + 2)(5x - 4) = 0
=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)
Vậy \(x\in\left\{-2;0,8\right\}\)
d) x2 - 4x - 21 = 0
=> x2 - 7x + 3x - 21 = 0
=> x(x - 7) + 3(x - 7) = 0
=> (x + 3)(x - 7) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)
Vậy \(x\in\left\{-3;7\right\}\)
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (3x - 10)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)
Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)
a, 4x2 + 4x + 1 = 25
⇔ ( 2x + 1 ) \(^2\) - 25 = 0
⇔( 2x + 1 - 5 ) ( 2x + 1 + 5 ) =0
⇔ ( 2x - 4 ) ( 2x + 6 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a, 15x3 - 15x = 0
15x(x2-1)=0
15x=0 hoặc x2-1=0 (tự tính nhoa)
b,3x2-6x+3=0
3(x2-2x+1)=0
x2 -2x+1=0:3=3
x2-2x=3-1=2
x(x-2)=0
x=0 hoặc x-2=0 (tự tính nhoa)
Bài làm
a) 15x3-15x=0
<=> 15x( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = { 0; + 1 }
b) 3x2 - 6x + 3 = 0
<=> 3( x2 - 2x + 1 ) = 0
<=> x2 - 2x + 1 = 0
<=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy x = 1
c) 5(x - 1) - 3x(1 - x) = 0
<=> 5(x - 1) + 3x(x - 1) = 0
<=> (5 + 3x)(x - 1) = 0
<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)
Vậy x = { -5/3; 1 }
e) -7(x + 2) = 2x(x + 2)
<=> -7(x + 2 ) - 2x( x + 2 ) = 0
<=> (x + 2)(-7 - 2x) = 0
<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)
Vậy x = { -2; x = -7/2 }
f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)
<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0
<=> (3x + 5)(2x - 3 - x + 1) = 0
<=> (3x + 5)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)
Vậy x = { -5/3; 2 }
a) x3 - 3x2 + 3x - 1 = 0
<=>x3-x2-2x2-2x-x-1=0
<=>x2(x-1)-2x(x-1)+(x-1)=0
<=>(x2-2x+1)(x-1)=0
<=>(x-1)(x-1)(x-1)=0
<=>(x-1)3=0
<=>x=1
Cái kí hiệu "∈" dòng đầu tiên là mình gõ nhầm bạn nhé
∈x3 + 3x2 + 3x + 1 - 3x2 - 3x = 0
x3 + 1 = 0
(x + 1)(x2 -x + 1) = 0
=> x + 1 = 0 (do x2 -x + 1 > 0 ∀x)
=> x = -1
Vậy x ∈ {-1}