K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

x2 + x = -2x2 + 2x

<=> 3x2 - x = 0

<=> x( 3x - 1 ) = 0

<=> x = 0 hoặc x = 1/3

28 tháng 7 2019

\(\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right)=1\)

\(\Leftrightarrow\left(-2x+x^2\right)^5=1\)

\(\Leftrightarrow-2x+x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1-\sqrt{2}\\x=\sqrt{2}+1\end{cases}}\)

Vậy \(x=1-\sqrt{2}\) hoặc \(x=\sqrt{2}+1\)

25 tháng 10 2015

(x+2)(x^2-2x+4)-x(x-1)(x+1)+2x=2

<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x(x2 - 1) + 2x = 2

<=> x3 + 8 - x3 + x + 2x = 2

<=> 3x + 8 = 2

<=> x = -2

2 tháng 2 2019

\(\left(x^2+2x\right)\left(x^2+2x-2\right)=3\)

\(\Leftrightarrow x^4+4x^3+2x^2-4x=3\)

\(\Leftrightarrow x^4+4x^3+2x^2-4x-3=3-3\)

\(\Leftrightarrow x^4+4x^3+2x^2-4x-3=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+3\right)\left(x-1\right)=0\)

Dễ rồi, tự làm nốt đi

2 tháng 2 2019

cảm ơn bạn nhé

17 tháng 10 2015

 

( x + 2)^2 - 2x( 2x + 3) = ( x + 1)^2

<=>x2+4x+4-4x2-6x=x2+2x+1

<=>-3x2-2x+4=x2+2x+1

<=>x2+2x+1+3x2+2x-4=0

<=>4x2+4x+1-4=0

<=>(2x+1)2-4=0

<=>(2x+1-2)(2x+1+2)=0

<=>(2x-1)(2x+3)=0

<=>2x-1=0 hoặc 2x+3=0

<=>x=1/2 hoặc x=-3/2

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)