Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,ĐKXĐ:x\ge0;x\ne4\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-2+\sqrt{x}+2-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{2}{\sqrt{x}+2}\right)\)
\(A=\frac{2}{\sqrt{x}}\)
\(2,A>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{4}{2\sqrt{x}}-\frac{\sqrt{x}}{2\sqrt{x}}>0\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{2\sqrt{x}}>0\)
Do \(\sqrt{x}>0\Rightarrow2\sqrt{x}>0\)
\(\Rightarrow4-\sqrt{x}>0\)
\(\Leftrightarrow-\sqrt{x}>-4\)
\(\Leftrightarrow\sqrt{x}< 4\)
\(\Leftrightarrow x< 16\)
Kết hợp với ĐKXĐ thì \(0\le x< 16\)và \(x\ne4\)
\(3,A=-2\sqrt{x}+5\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}=-2\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}\left(-2\sqrt{x}+5\right)=2\)
\(\Leftrightarrow-2x+5\sqrt{x}-2=0\)
\(\Leftrightarrow-2x+2.5\sqrt{x}+2.5\sqrt{x}-2=0\)
\(\Leftrightarrow\left(-2x+2.5\sqrt{x}\right)+\left(2.5\sqrt{x}-2\right)=0\)
Đến đây thì mình chịu
Bạn tự giải nốt nhé
HỌC TỐT
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
ĐKXĐ: \(x\ne1\)
\(x^2+\frac{x^2}{\left(x-1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{x^2\left(x-1\right)^2+x^2}{\left(x-1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{x^4-2x^3+2x^2}{x^2-2x+1}=\frac{5}{4}\)
\(\Rightarrow\left(x^4-2x^3+2x^2\right).4=5\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^4-8x^3+8x^2-\left(5x^2-10x+5\right)=0\)
\(\Leftrightarrow4x^4-8x^3+3x^2+10x-5=0\)
\(\Leftrightarrow4x^3\left(x+1\right)-12x^2\left(x+1\right)+15x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x^3-12x^2+15x-5\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x^2\left(2x-1\right)-5x\left(2x-1\right)+5\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)\left(2x^2-5x+5\right)=0\)
Mà \(2x^2-5x+5=2\left(x-\frac{5}{4}\right)^2+\frac{30}{16}>0\forall x\)
Do đó: \(\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)