Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+8x+3x+24=0\)
\(\Leftrightarrow\left(x^2+8x\right)+\left(3x+24\right)=0\)
\(\Leftrightarrow x\left(x+8\right)+3\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-3\end{matrix}\right.\)
Vậy...
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
\(\left(x-1\right)^3-\left(3x-5\right)\left(3x+5\right)=\left(x-3\right)\left(x^2+3x+9\right)-3x\left(x-1\right)-9x^2+x\) \(\text{⇔}x^3-3x^2+3x-1-9x^2+25=x^3-27-3x^2+3x-9x^2+x\) \(\text{⇔}3x-4x+51=0\)
\(\text{⇔}x=51\)
KL.......
\(x^2+12x+2x+24=0\)
\(\Leftrightarrow\left(x^2+2x\right)+\left(12x+24\right)=0\)
\(\Leftrightarrow x\left(x+2\right)+12\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+12\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-12\\x=-2\end{matrix}\right.\)
\(x^2+12x+2x+24\)
\(\Leftrightarrow x\left(x+12\right)+2\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-12\end{matrix}\right.\)
Vậy ,...
\(7x\left(x-2\right)=x-2\)
\(\Leftrightarrow7x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(7x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\7x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{7}\end{cases}}}\)
7x(x-2) = (x-2)
<=> 7x(x-2) - (x-2) = 0
<=> (x-2)(7x-1) = 0
<=> \(\hept{\begin{cases}x-2=0\\7x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\x=\frac{1}{7}\end{cases}}\)
\(x^2+8x-3x-24=0\)
\(\Leftrightarrow x\left(x+8\right)-3\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+8=0\) hoặc \(x-3=0\)
.. \(x+8=0\Leftrightarrow x=-8\)
.. \(x-3=0\Leftrightarrow x=3\)
Vậy \(S=\left\{-8;3\right\}\)
$x^2+8x-3x-24=0\\\Leftrightarrow x(x+8)-3(x+8)=0\\\Leftrightarrow (x-3)(x+8)=0\\\Leftrightarrow x-3=0 \ or \ x+8=0\\\Leftrightarrow x=3 \ or \ x=-8$