Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x-3)2=3-2x
=> (3-2x)2=3-2x
=>(3-2x)(3-2x)=3-2x
=>(3-2x)(3-2x)-(3-2x)=0
=>(3-2x)(3-2x+1)=0
=>3-2x=0 hoặc 3-2x+1=0(bạn tự tính ra nha)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)
\(x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)
\(x^2-2x^2+2x^2y^2-x^2y^2+2y^2-2=0\)
\(-x^2+2y^2-2=0\)
\(-x^2+2.y^2-2=0\)
\(\Rightarrow-x^2+2=0\) và \(y^2-2=0\)
TH1: \(-x^2+2=0\) tự tìm x tiếp rất đơn giản như tìm x bình thường
TH2:\(y^2-2=0\) tương tự như TH1 tự tìm x tiếp rất đơn giản như tìm x binhf thương
sẵn tiện kp nhé
Bỏ ngoặc ta được:
\(x^2+2.x^2y^2+2y^2-x^2y^2-2x^2-2=0\)
\(=x^2y^2-x^2+2y^2-2=0\)
\(=x^2\left(y^2-1\right)+2\left(y^2-1\right)-2=0\)
\(=\left(y^2-1\right)\left(x^2+2\right)=2\)
\(=>\left(y^2-1\right),\left(x^2+2\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Rồi tự kẻ bảng ra nhé!
a ,( x2 -5 ) x ( x2 +9) x( -11-8x) =0
=> x2 -5 = 0 ; x2 + 9 = 0 hoặc -11-8 x =0 .
- => x2 = 5 ; x2 = -9 hoặc x = \(\frac{-11}{8}\)=> x = +\(\sqrt{5}\)và -\(\sqrt{5}\)hoặc x=\(\frac{-11}{8}\)
a) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
b) \(x^2-3x+2=0\Leftrightarrow x^2-3x+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\sqrt{\frac{1}{4}}=\frac{1}{2}\\x-\frac{3}{2}=-\sqrt{\frac{1}{4}}=-\frac{1}{2}\end{cases}}\)
Giải tiếp nha
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Vì \(\left(x-1\right)^2\) và \(\left(2x-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi x
Nên từ \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)
=> x-1 =0 và 2x-1 =0
=> x=1 và x= 1/2 ( Vô lí )
Vậy không có giá trị nào của x thỏa mãn.
Ta có :
\(\begin{cases}\left(x-1\right)^2\ge0\\\left(2x-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x=1\\x=\frac{1}{2}\end{cases}\)
Vì x không đồng thời xảy ra
=> \(x\in\varnothing\)
\(x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-2=0\Rightarrow x=2\end{cases}}\)
\(x^2-2x=0\)
<=> \(x\left(x-2\right)=0\)
<=> \(\hept{\begin{cases}x=0\\x-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=2\end{cases}}\)
học tốt