Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 10x + 2x - 20 = 0
⇔ x(x - 10) + 2( x - 10) = 0
⇔ ( x + 2) ( x - 10) = 0
=> x + 2 = 0 hoặc x - 10 = 0
+ x + 2 = 0 ⇔ x = -2
+ x - 10 = 0 ⇔ x = 10
Vậy...
x2 - 10x + 2x - 20 = 0
\(\Leftrightarrow\)(x2 - 10x )+ (2x - 20 )= 0
\(\Leftrightarrow\)x(x - 10 )+ 2(x - 10 )= 0
\(\Leftrightarrow\)(x - 10 )(x+2)= 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-10=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy x= 10 hoặc x= -2
\(a,x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1=x^2+2x+1\)
\(\Leftrightarrow x^2+2x+1-x-1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)
\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x^2+1=0\)
Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)
\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm
Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)
\(x^2+8x+3x+24=0\)
\(\Leftrightarrow\left(x^2+8x\right)+\left(3x+24\right)=0\)
\(\Leftrightarrow x\left(x+8\right)+3\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-3\end{matrix}\right.\)
Vậy...
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
1: \(\Leftrightarrow x^2-25-x^2-8x-16+\left(4x+1\right)^3=64x^3+8+48x^2-12x\)
\(\Leftrightarrow-8x-41+64x^3+48x^2+12x+1=64x^3+48x^2-12x+8\)
=>4x-40=-12x+8
=>16x=48
hay x=3
2: \(\Leftrightarrow12x^2-48x-x^3+1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\)
\(\Leftrightarrow-63=-12x-28\)
=>12x+28=63
=>12x=35
hay x=35/12
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
\(12x\left(x-4\right)-\left(x+1\right)\left(x^2-x+1\right)+\left(x-4\right)^3=\left(x-3\right)\left(x+1\right)-\left(x+5\right)^2\) ⇔ \(12x^2-48x-x^3-1+x^3-12x^2+48x-64=x^2-2x-3-x^2-10x-25\) ⇔ \(12x-37=0\)
⇔ \(x=\dfrac{37}{12}\)
Vậy ,....
\(x^2+12x+2x+24=0\)
\(\Leftrightarrow\left(x^2+2x\right)+\left(12x+24\right)=0\)
\(\Leftrightarrow x\left(x+2\right)+12\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+12\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-12\\x=-2\end{matrix}\right.\)
\(x^2+12x+2x+24\)
\(\Leftrightarrow x\left(x+12\right)+2\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-12\end{matrix}\right.\)
Vậy ,...