Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TÌM X, Y BIẾT
a, x/3 =y/5 và y-x =8
b,x:7 =y:5 và x-y = 12
c, 2x =3y và y-x = -19
d, x/y =2/5 và xy =40
Ap dung day ti so = nhau ta co:
x/3=y/5=y-x/5-3=8/2=4
=>x/3=4=>x=12
y/5=4=>y=20
Ban lam tuong tu voi cau khac nha!!
Ta có: a) \(\frac{x}{3}=\frac{y}{5};x-y=8\Rightarrow\frac{x-y}{3-5}=\frac{8}{2}=4\)
\(\Rightarrow\hept{\begin{cases}x=4.3=12\\y=4.5=20\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}x:7=y:5\\x-y=12\end{cases}\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{x-y}{7-5}=\frac{12}{2}=6}\)
\(\Rightarrow\hept{\begin{cases}x=6.7=42\\y=6.5=30\end{cases}}\)
c) Ta có: \(\hept{\begin{cases}2x=3y\\y-x=-19\end{cases}\Rightarrow\frac{y}{2}=\frac{x}{3}=\frac{y-x}{2-3}=\frac{-19}{-1}=19}\)
\(\Rightarrow\hept{\begin{cases}x=19.3=57\\y=19.2=38\end{cases}}\)
d) Tự làm
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
a) Đặt \(\frac{x}{3}=\frac{y}{7}=k\)
\(\Rightarrow\)x = 3k ; y = 7k
xy = 84 hay 3k . 7k = 84
\(\Rightarrow\)21k2 = 84
\(\Rightarrow\)k2 = 4
\(\Rightarrow\)\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=6;y=14\\x=-6;y=-14\end{cases}}\)
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}=\frac{\left(1+3y\right)+\left(1+7y\right)}{12+x}=\frac{2+10y}{12+x}=\frac{2.\left(1+5y\right)}{2.\frac{1}{2}.\left(12+x\right)}=\frac{1+5y}{\frac{1}{2}.\left(12+x\right)}\)
\(\Rightarrow5x=\frac{1}{2}.\left(12+x\right)=6+\frac{1}{2}x\)
\(\Rightarrow5x-\frac{1}{2}x=6\)
\(\Rightarrow\frac{9}{2}x=6\)
\(\Rightarrow x=\frac{4}{3}\)
Từ đó suy ra y = \(\frac{-2}{15}\)