Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.3x= 10.312+8.274
2.3x = 10.(33)4+ (33)4 . 8
2.3x= (33)4. 18
2.3x= (33)4.2.32
2.3x= 312+2.2
2.3x= 314.2
=> x = 14
tìm x E Z biết
a, 0 : x =0
\(\Rightarrow x=\frac{0}{0}\)
\(\Rightarrow x\in\varnothing\)
b, 4 mũ x =64
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
c, 2 mũ x =16
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
d, 9 mũ x-1=9
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
e,x mũ 4 =16
\(\Rightarrow x^4=2^4\)
\(\Rightarrow x=2\)
g, 2 mũ x : 2 mũ 5 =1
\(\Rightarrow2^{x-5}=1\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
giúp mk với mk đang cần
a)|x-3|=7-(-2)
|x-3|=9
x-3=9
th1:x-3=9 th2:x-3=-9
x=9+3=12 x=(-9)+3=-6
b. ( 7-x ) - ( 25+7) = -25 c. (3x - 2 mũ 4 ) . 7 mũ 3 = 2. 7 mũ 4
7-x-25-7=-25 3x-2^4=2.7^4:7^3
-x-25=-25 3x-16=14
-x=0 3x=30
vậy x=0 vậy x=10
15S+1=15+15.42+15.44+...+15.420+1
=16+15.42+15.44+...+15.420
=42+15.42+15.44+...+15.420
=16.42+15.44+...+15.420 =44+15.44+...+15.420=16.44+...+15.420=16.418+15.420=16.420=422
vậy x-5=22 <=>x=27
a) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
\(\left(19x+2\cdot5^2\right):14=9\)
\(19x+2\cdot5^2=9\cdot14=126\)
\(19x+50=126\)
\(19x=126-50=76\)
\(x=\frac{76}{19}=4\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(\left(x+x+..+x\right)+\left(1+2+3+...+30=1240\right)\)(31 chữ số x)
\(31x+\frac{30\cdot31}{2}=1240\Leftrightarrow31x+465=1240\)
\(31x=1240-465=775\)
\(x=\frac{775}{31}=25\)
c) \(11-\left(-53+x\right)=97\)
\(11+53-x=97\Leftrightarrow64-x=97\)
\(x=64-97=-33\)
d) \(-\left(x+81\right)+213=-16\)
\(-x-81+213=-16\)
\(-x+132=-16\)
\(-x=-16-132=-148\)
\(x=148\)
..........
+) \(x^3=x^2\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) \((7x-11)^3=2^5.5^2+200\)
\((7x-11)^3=2^3.2^2.5^2+2^3.5^2\)
\((7x-11)^3=2^3.5^2.(2^2+1)\)
\((7x-11)^3=2^3.5^2.5\)
\((7x-11)^3=2^3.5^3\)
\((7x-11)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=21\)
\(x=3\)
+) \(3+2^{x-1}=24-[4^2-(2^2-1)]\)
\(3+2^{x-1}=11\)
\(2^{x-1}=8\)
\(2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(x=4\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3