![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x:2=y:(-5)
\(\Rightarrow\frac{x}{-5}=\frac{y}{2}\)và x-y=-7
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{x}{-5}=\frac{y}{2}=\frac{x-y}{-5-2}=\frac{-7}{-7}=1\)
Suy ra:x=-5.1=-5
y=2.1=2
Vậy:x=-5;y=2
Tìm x biết:
\(\frac{-12}{13}x-5=\frac{79}{13}\Rightarrow\frac{-12}{13}x=\frac{79}{13}+5\Rightarrow\frac{-12}{13}x=\frac{79}{13}+\frac{65}{13}\Rightarrow\frac{-12}{13}x=\frac{144}{13}\Rightarrow x=\frac{144}{13}:\frac{-12}{13}\Rightarrow x=\frac{144}{13}.\frac{13}{-12}=\frac{12}{1}.\frac{1}{-1}=\frac{12}{-1}=-12\)
tính :
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
so sánh các số: \(2^{150}\)và \(3^{100}\)
\(2^{150}=\left(2^{50}\right)^{100}\)
\(3^{100}=\left(3\right)^{100}\)\(\Rightarrow2^{50}va3\Rightarrow2^{150}>3^{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2^x+2^{x+5}=144\)
\(\Rightarrow2^x+2^x\cdot2^5=144\)
\(\Rightarrow2^x+2^x\cdot32=144\)
\(\Rightarrow2^x\left(1+32\right)=144\)
\(\Rightarrow2^x\cdot33=144\)
\(\Rightarrow2^x=144:33\)
\(\Rightarrow2^x=\frac{48}{11}\)
\(\Rightarrow x\in\varnothing\)
Vậy không tìm được x thỏa mãn đề bài
b) \(|x+1|+|x+3|+|x+5|=7x\)
Ta có: \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+3|\ge0\forall x\\|x+5|\ge0\forall x\end{cases}\Rightarrow|x+1|+|x+3|+|x+5|\ge0\forall x\Rightarrow7x\ge0\forall x}\)
\(\Rightarrow|x+1|+|x+3|+|x+5|=x+1+x+3+x+5=7x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+3+5\right)=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy x=\(\frac{4}{9}\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+3\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\Rightarrow x\ge0\)
Từ (1)\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\)
\(3x+9=7x\)
\(3x-7x=-9\)
\(-4x=-9\)
\(x=\frac{9}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\left|5x-3\right|-x=7\)
\(\Rightarrow\left|5x-3\right|=7+x\)
\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)
Vậy ....................
Bạn ơi !!! ý A tham khảo tại link này nè :
https://h.vn/hoi-dap/question/394208.html
~ Học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
| x2 +|x-1| |=x2 +5
=> x2 + |x-1| = x2 + 5
=> |x - 1| = 5
=> x - 1 = 5 hoặc x - 1 = -5
=> x = 6 hoặc x = -4
Vậy S = { -4; 6 }
#Châu's ngốc
Bài giải
\(\left|x^2+ | x-1\text{ }|\right|=x^2+5\)
Mà \(x^2+5\ge5\)nên :
\(x^2+\left|x-1\right|=x^2+5\)
\(\left|x-1\right|=x^2+5-x^2\)
\(\left|x-1\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x-1=-5\\x-1=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-4\text{ ; }6\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-3\cdot\left|2+5x\right|=4\)
\(\Rightarrow\left|2+5x\right|=-\frac{4}{3}\)
Ta có mọi giá trị tuyệt đối đều có kq là số dương nên => \(x\in\varnothing\)