![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Ta có:
( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019
= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019
= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019 ( 1 )
* Đặt x2 + 8x + 10 = a
thì ( 1 ) trở thành:
( a - 3 ) ( a + 5 ) + 2019
= a2 + 2a - 15 + 2019
= a ( a + 2 ) + 2004
=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.
Vậy ..........
b)
- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x
Ta có:
A = x2 / (x4 + x2 + 1)
A = x2 / [( x2 - x + 1 )( x2 + x + 1 )]
A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}
A = x2 / [5x . ( 5x + 2x )]
A = x2 / ( 5x . 7x )
A = x2 / 35x2
A = 1/35
Vậy A = 1/35.
![](https://rs.olm.vn/images/avt/0.png?1311)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5
=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0
=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0
=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0
=> -2x2 + 3 = 0
=> -2x2 = -3
=> x2 = 3/2
=> x = \(\pm\sqrt{\frac{3}{2}}\)
2. \(\left(x+5\right)^2-6=0\)
=> x2 + 10x + 25 - 6 = 0
=> x2 + 10x + 19 = 0
=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)
3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)
=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0
=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0
=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0
=> -2x + 27 = 0
=> -2x = -27
=> x = 27/2
4. \(\left(x-2\right)^3-x^3+6x^2=7\)
=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7
=> 12x - 8 = 7
=> 12x = 15
=> x = 5/4
5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)
=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12
=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12
=> -6x + 12 = 12
=> -6x = 0
=> x = 0
6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)
=> 48x - 5x - 2 = 0
=> 43x - 2 = 0
=> 43x = 2
=> x = 2/43
Còn bài cuối tự làm :>
Anh Sang làm cầu kì quá ;-;
1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5
<=> x3 + 8 - x3 - 2x2 = 5
<=> 8 - 2x2 = 5
<=> 2x2 = 3
<=> x2 = 3/2
<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)
<=> \(x=\pm\sqrt{\frac{3}{2}}\)
2. ( x + 5 )2 - 6 = 0
<=> ( x + 5 )2 - ( √6 )2 = 0
<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0
<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)
3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x
<=> x3 + 27 - x3 = 2x
<=> 27 = 2x
<=> x = 27/2
4. ( x - 2 )3 - x3 + 6x2 = 7
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
<=> 12x - 8 = 7
<=> 12x = 15
<=> x = 15/12 = 5/4
5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12
<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12
<=> 3x2 - 12x + 12 + 6x - 3x2 = 12
<=> -6x + 12 = 12
<=> -6x = 0
<=> x = 0
6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0
<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0
<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0
<=> 43x - 2 = 0
<=> 43x = 2
<=> x = 2/43
7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0
<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0
<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0
<=> -39x + 4 = 0
<=> -39x = -4
<=> x = 4/39
![](https://rs.olm.vn/images/avt/0.png?1311)
1) (3x+4)(x+1) = 3x2+7x+4 đặt là a
(6x+7)2= 36x2+84x+49 = 12a+1
=> a(12a+1)- 6 = 12a2 -a -6 = (3a+2)(4a-3) = (9x2+21x+14)(12x2+28x+13)
2) (x-2)2=x2-4x+4 đặt là a
(2x-5)(2x-3)= 4x2-16x+15 =4a-1
=> a(4a-1)-5 = 4a2-a-5 = (4a-5)(a+1) = ( 4x2-16x+11)(x2-4x+5)
3) đặt (x+3)2 =a ta làm tương tự
4) (x-2)(x-10)(x-4)(x-5) = (x2-12x+20)(x2-9x+20)
đặt x2+20=a => (a-12x)(a-9x)-54x2 = a2-21ax+54x2 = (a-18x)(a-3x) = (x2-18x+20)(x2-3x+20)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3 - 8 = ( x - 2 )( x - 12 )
<=> ( x - 2 )( x2 + 2x + 4 ) - ( x - 2 )( x - 12 ) = 0
<=> ( x - 2 )( x2 + 2x + 4 - x + 12 ) = 0
<=> ( x - 2 )( x2 + x + 16 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x^2+x+16=0\end{cases}}\Leftrightarrow x=2\)( vì x2 + x + 16 = ( x2 + x + 1/4 ) + 63/4 = ( x + 1/2 )2 + 63/4 ≥ 63/4 > 0 ∀ x )
b) x2( x2 + 4 ) - x2 = 4
<=> x2( x2 + 4 ) - x2 - 4 = 0
<=> x2( x2 + 4 ) - ( x2 + 4 ) = 0
<=> ( x2 + 4 )( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}x^2+4=0\\x^2-1=0\end{cases}}\Leftrightarrow x=\pm1\)( vì x2 + 4 ≥ 4 > 0 ∀ x )
Ko khó nè :3, đừng tách ra nhé !
a, \(x^3-8=\left(x-2\right)\left(x-12\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)=\left(x-2\right)\left(x-12\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-x+12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\Leftrightarrow x=2\)
b, \(x^2\left(x^2+4\right)-x^2=4\Leftrightarrow-x^2\left(-x^2-4\right)-x^2=4\)
\(\Leftrightarrow-x^2\left(4-x^2\right)-x^2=4\Leftrightarrow-x^2\left(2-x\right)\left(2+x\right)-x^2-4=0\)
\(\Leftrightarrow-x^2\left(2-x\right)\left(2+x\right)+\left(-x^2-4\right)=0\)
\(\Leftrightarrow-x^2\left(2-x\right)\left(2+x\right)+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(-x^2+1\right)\left(2-x\right)\left(2+x\right)=0\Leftrightarrow x=\pm1;\pm2\)
Check hộ dáp án nhá :), ko chắc lắm nếu khai triển sẽ dễ nhìn hơn đấy.
![](https://rs.olm.vn/images/avt/0.png?1311)
3( x - 5 )( x - 2 )( x + 2 ) + 4 = 7 + 3x3 - 15x2
<=> ( 3x - 15 )( x2 - 4 ) + 4 - 7 = 3x3 - 15x2
<=> 3x3 - 12x - 15x2 + 60 - 3 = 3x3 - 15x2
<=> 57 = 3x3 - 15x2 - 3x3 + 12x + 15x2
<=> 57 = 12x
<=> x = 57/12 = 19/4
Tìm x biết:
3(x - 5)(x - 2)(x + 2) + 4 = 7 + 3x3 - 15x2
\(3\left(x-5\right)\left(x-2\right)\left(x+2\right)+4=3x^3-15x^2-12x=64\)
\(7+3^3+\left(-15\right)x^2=3x^3-15x^2+7\)
\(3x^3-15x^2-12x+64=3x^3-15x^2+7\)
\(\Rightarrow\frac{19}{4}\)
(x + 3)^2 + (4 + x)(4 - x) = 10
x^2 + 6x + 9 + 16 - x^2 = 10
6x + 25 = 10
6x = 10 - 25
6x = -15
x = -15/6 = -5/2
Ta có ( x+3)^2 +(4+x)(4-x) =10
=> x^2 + 6x +9 +16- x^2 =10
=> 6x+25 =10
=> 6x= -15
=> x=-5/2
Vậy x=-5/2