Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(2,\left(x+2\right)\left(x-3\right)-x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
\(3,36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{6}\\x=\frac{7}{6}\end{cases}}\)
Chúc bn học giỏi nhoa!!!
Ta có : x2 - x = 0
=> x(x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(x^3-2x^2-x+2=0\)
\(\Rightarrow x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
Tìm được \(x\in\left\{2;1;-1\right\}\)
\(\left(x^2+x\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)(1)
Mà \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Bài giải:
a) x3 – 1414x = 0 => x(x2 –(12)2(12)2) = 0
=>x(x - 1212)(x + 1212) = 0
Hoặc x = 0
Hoặc x - 1212 = 0 => x = 1212
Hoặc x + 1212 = 0 => x = -1212
Vậy x = 0; x = -1212; x = 1212.
b) (2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0
(x - 4)(3x + 2) = 0
Hoặc x - 4 = 0 => x = 4
Hoặc 3x + 2 = 0 => 3x = 2 => x = -2323
Vậy x = 4; x = -2323.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) - 4(x -3)= 0
(x - 3)(x2- 22) = 0
(x - 3)(x - 2)(x + 2) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc x - 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
a ) \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow\) \(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
Hoặc x = 0
Hoặc \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Hoặc \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)
b) \((2x - 1 )^2 - (x + 3)^2 = 0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
Hoặc \(x-4=0\Rightarrow x=4\)
Hoặc \(3x+2=0\Rightarrow3x=-2\Rightarrow x=-\dfrac{2}{3}\)
c) \(x^2 (x-3) + 12 - 4x = 0\)
\(\Leftrightarrow x^2\left(x-3\right)-\left(4x-12\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)
Hoặc \((x - 3) = 0\) \(\Rightarrow\) x = 3
Hoặc \(x - 2 = 0\) \(\Rightarrow\) x = 2
Hoặc \(x + 2 = 0 \) \(\Rightarrow\) x = \(- 2\)
\(a,x^3-13x=0\)
\(x.\left(x^2-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{13}\end{cases}}}\)
\(b,2-25x^2=0\)
\(\Rightarrow25x^2=2\Rightarrow x^2=\frac{2}{25}\Rightarrow x=\sqrt{\frac{2}{25}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
a, x 3 - 13 x = 0
=> x ( x 2 - 13 ) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow[\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)
b, 2 - 25 x 2 = 0
=> 25 x 2 = 2
=> x 2 = 0,08
=> \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
x, x 2 - x + \(\frac{1}{4}\)= 0
=> \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
a, 3x 3 - 3x = 0
=> 3x ( x 2 - 1 ) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
b, x ( x - 2 ) + ( x - 2 ) = 0
=> ( x - 2 ) ( x + 1 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
c, 5x ( x - 2000 ) - x + 2000 = 0
=> ( x - 2000 ) ( 5x - 1 ) = 0
=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)
\(x^3+9x=0\)
<=> \(x\left(x^2+9\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)
<=> \(x=0\)
\(9x^2-4-2\left(3x-2\right)^2=0\)
<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)
<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)
<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)
<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)
<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)
<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)
<=> \(3\left(3x-2\right)\left(2-x\right)=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)
\(\left(x^3-x^2\right)-4x+8x-4=0\)
<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)
<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x^2+4\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)
<=> \(x=1\)
\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)
<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)
<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)
<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)
<=> \(5x-2+3x-6=-4\)
<=> \(8x-8=-4\)
<=> \(8\left(x-1\right)=-4\)
<=> \(x-1=-\frac{1}{2}\)
<=> \(x=-\frac{3}{2}\)
a,x2+6x-7=0
=>x2+7x-x-7=0
=>(x^2+7x)-(x+7)=0
=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0
=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)
b, x^3-2x^2-5x+6=0
=>x(x^2-2x-5+6)=0
=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, 2x^2-5x+3=0
=>2x^2-2x-3x+3=0
\(x^3-19x-30=0\)
\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)
\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)
\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)
1. \(x^3-\frac{1}{4}x=0\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\Leftrightarrow x\left[x^2-\left(\frac{1}{2}\right)^2\right]=0\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}}\)
Vậy S={0;1/2;-1/2}
2.\(\left(2x-1\right)^2-\left(x+3\right)^2=0\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-4=0\\3x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\3x=-2\Leftrightarrow x=\frac{-2}{3}\end{cases}}\)
Vậy S={4; -2/3}