Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
1) Ta có\(\frac{x+2}{5}=\frac{1}{x-2}\)
=> (x + 2)(x - 2) = 5
=> x2 + 2x - 2x - 4 = 5
=> x2 - 4 = 5
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
2) \(\frac{3}{x-4}=\frac{x+4}{3}\)
=> (x - 4)(x + 4) = 9
=> x2 + 4x - 4x - 16 = 9
=> x2 - 16 = 9
=> x2 = 25
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
a, \(\frac{x+2}{5}=\frac{1}{x-2}ĐK:x\ne2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{5\left(x-2\right)}=\frac{5}{5\left(x-2\right)}\Leftrightarrow\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^2-2x+2x-4=5\Leftrightarrow x^2=9\Leftrightarrow x\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}ĐK:x\ne4\)
\(\Leftrightarrow\frac{9}{\left(x-4\right)3}=\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)}\Leftrightarrow9=x^2-4x+4x-16\)
\(\Leftrightarrow x^2-16=9\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
c, \(\frac{x+2}{x+6}=\frac{3}{x}=1ĐK:x\ne0;-6\)
Xét : \(\frac{x+2}{x+6}=1\Leftrightarrow x+2=x+6\Leftrightarrow-4\ne0\)
Xét : \(\frac{3}{x}=1\Leftrightarrow3=x\)
Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+3\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\Rightarrow VT\ge0\)
\(\Leftrightarrow3x-4\ge\Leftrightarrow x\ge\frac{4}{3}\)
\(\Rightarrow pt\Leftrightarrow3x+9=3x-4\Leftrightarrow9=-4\)(vô lí)
Vậy pt vô nghiệm
\(\left||2x-3|-x+3\right|=4x-1\)(1)
*Nếu \(x\le3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|+3-x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=5x-4\)(2)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow2x-3=5x-4\)
\(\Leftrightarrow-3x=-1\Leftrightarrow x=\frac{1}{3}\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow3-2x=5x-4\)
\(\Leftrightarrow-7x=-7\Leftrightarrow x=1\left(TM\right)\)
*Nếu \(x>3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|-3+x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=3x+2\)(3)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow2x-3=3x+2\Leftrightarrow-x=5\Leftrightarrow x=-5\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow3-2x=3x+2\Leftrightarrow-5x=-1\Leftrightarrow x=\frac{1}{5}\left(L\right)\)
Vậy x = 1
\(ĐKXĐ:\hept{\begin{cases}x\ne-3\\x\ne-1\end{cases}}\)
\(\frac{x-2}{x+3}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x-2\right)\left(x+1\right)=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-x-2=x^2-9\)
\(\Leftrightarrow-x-2=-9\)
\(\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )
Vậy \(x=7\)
\(\frac{x-2}{x+3}=\frac{x-3}{x+1}\)
\(\left(x-2\right)\left(x+1\right)=\left(x+3\right)\left(x-3\right)\)
\(x^2-x-2=x^2-9\)
\(x^2-x=x^2-9+2\)
\(x^2-x=x^2-7\)
\(-x=x^2-7-x^2\)
\(-x=-7\)
\(x=7\)