Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)
\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)
Dấu " = " xảy ra <=> x - 4 = 0 => x = 4
Vậy MMin = 2002 khi x = 4
b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)
\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2
Vậy NMin = 2010 khi x = 3/2
c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy PMin = 8063/4 khi x = 1/2
d) \(Q=x^2-2x+y^2+4y+2020\)
\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)
\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy QMin = 2015 khi x = 1 ; y = -2
a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)
\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)
\(\left|2x-3\right|=\dfrac{17}{6}\)
\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)
\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)
vậy...
\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Dấu ngoặc vuông nhé
thánh bấm nhầm
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{4}{5}=x-\dfrac{3}{2}\\2x+\dfrac{4}{5}=\dfrac{3}{2}-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{10}\\x=\dfrac{7}{30}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|3x-2\right|=9-4x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(3x-2\right)^2-\left(4x-9\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(3x-2-4x+9\right)\left(3x-4+4x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{9}{4}\\\left(7-x\right)\left(7x-13\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{13}{7}\)
Cho A= \(x-2x+2^2x-2^3x+2^4x-...+2^{2019}x=2^{2020}+1\)
\(x\left(1-2+2^2-2^3+...+2^{2019}\right)=2^{2020}+1\)
Đặt B= \(1-2+2^2-2^3+...+2^{2019}\)
2B= \(2-2^2+2^3-2^4+...+2^{2020}\)
2B+B= \(2^{2020}+1\)\(\Leftrightarrow B=\frac{2^{2020}+1}{3}\)
Thay B vào A, ta có:
A= \(\frac{\left(2^{2020}+1\right)x}{3}=2^{2020}+1\)
\(\Rightarrow\left(2^{2020}+1\right)x=\left(2^{2020}+1\right).3\)
\(\Rightarrow x=3\)
x - 2x + 22x - 23x + ... + 22018x - 22019x = 22020 + 1 (sửa lại đề vì để nguyên như thế dãy không đi theo quy luật với tất cả số)
=> x(1 - 2 + 22 - 23 + ... + 22018 - 22019) = 22020 + 1
Đặt A = 1 - 2 + 22 - 23 + ... + 22018 - 22019
=> 2A = 2 - 22 + 23 - 24 + ... + 22019 - 22020
Lấy 2A cộng A theo vế ta có :
2A + A = (2 - 22 + 23 - 24 + ... + 22019 - 22020) + (1 - 2 + 22 - 23 + ... + 22018 - 22019)
=> 3A = 22020 + 1
=> A = 22020 + 1 : 3
Khi đó (1) <=> x(22020 + 1) : 3 = 22020 + 1
=> x = 3
Vậy x = 3