Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_{n-1}=\frac{1}{1+2+3+...+n}=\frac{2}{n\left(n+1\right)}\)=>\(1-a_{n-1}=1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)........\left(1-\frac{2}{2006.2007}\right)\)
\(=\left(\frac{1.4}{2.3}\right)\left(\frac{2.5}{3.4}\right)\left(\frac{3.6}{4.5}\right)........\left(\frac{2005.2008}{2006.2007}\right)\)\(=\frac{\left(1.2.3......2005\right)\left(4.5.6.....2008\right)}{\left(2.3.4.....2006\right)\left(3.4.5....2007\right)}=\frac{1.2008}{2006.3}=\frac{1004}{3009}\)
Ta có:
\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)
\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)
MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )
\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)
A=2^100-2^99+2^98-2^97+..+2^2-2
=>2A=2^101-2^100+2^99-2^98+...+2^3-2^2
=>2A+A=(2^101-2^100+2^99-2^98+..+2^3-2^2)+(2^100-2^99+2^98-2^97+..+2^2-2)
=>3A=2^101-2
=>A=(2^101-2)/3
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
\(\frac{4}{7}=\frac{12}{21}\)
\(\Rightarrow\) \(x+4=12\Rightarrow x=8\)
\(\Rightarrow y+7=21\Rightarrow y=14\)
x + y = 8 + 14 = 22
****
suy ra (x + 4)7 = (y+7)4 mà x + y =22
7x+28 = 4y +28 suy ra x=22 -y (2)
7x = 4y (1)
từ (1) và (2) suy ra :7(22 - y)=4y
154 - 7y =4y
154 = 11y
suy ra y = 154 /11=14
x = 22-14=8
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)
=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)
=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Đến đây bạn tự làm tiếp
\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)
\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)
Theo tính chất của dãy tỉ số bằng nhau thì
\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)
\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)
\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)
Vì 0 nhân với số nào cũng bằng 0 nên
Nếu x=0 thì ta có
0×(-3×0^2-0-2)=0
Vậy x sẽ bằng 0
Đa thức vế trái bằng 0 khi một trong hai thừa số "=" 0
Suy ra \(\orbr{\begin{cases}x=0\\-3x^2-x-2=0\left(1\right)\end{cases}}\)
Giải (1): Chia cả hai vế cho -1:\(3x^2+x+2=0\)
Ta có: \(3x^2+x+2=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{23}{36}\right]=3\left(x+\frac{1}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}>0\forall x\)
Do đó (1) vô nghiệm.
Vậy x = 0
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
LG :
x( 1 - 2 +2^2 - 2^3 ........+2^2006 - 2^ 2007) = 2^2008 - 1
co 1 - 2+ 2^2 - 2^3 .........- 2^2007 = - ( 2^2008 - 1) /3
Do đó x = -3