![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. (3x - 1).(2x + 7) - (x + 1).(6x - 5) = 16
<=> 6x^2 + 19x - 7 - (6x^2 + x - 5) = 16
<=> 18x - 2 = 16
<=> 18x = 18
<=> x = 1
b. (10x + 9).x - (5x - 1).(2x + 3) = 8
<=> 10x^2 + 9x - (10x^2 + 13x - 3) = 8
<=> -4x + 3 = 8
<=> -4x = 5
<=> x = -5/4
c. (3x - 5).(7 - 5x) + (5x + 2).(3x - 2) - 2 = 0
<=> -15x^2 + 46x - 35 + 15x^2 - 4x - 4 - 2 = 0
<=> 42x - 41 = 0
<=> x = 41/42
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
5x(x-3)^2-5(x-1)^3+15(x+2)(x-2)=5
5x(x-3)^2-5(x-1)^3+15(x^2-2^2)=5
5x(x^2-6x+9)-5(x^3-3x^2+3x-1)+15x^2-60=5
5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5
30x-55=5
30x=60
x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2
b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4
c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12
d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64
e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2 + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1
B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0
=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0
=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0
=> -12x + 32 = 0
=> -12x = -32
=> x = -32 : (-12) = 8/3
b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0
=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0
=> 20x + 9 = 0
=> 20x = -9
=> x = -9/20
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3x\left(x+2\right)-20x-40=0\)
\(\Rightarrow3x\left(x+2\right)-20\left(x+2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}}\)
Vậy \(x=\left\{\frac{2}{3};-2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
x4 + x3 + 6x2 = -5( x + 1 )
<=> x4 + x3 + 6x2 = -5x - 5
<=> x4 + x3 + 6x2 + 5x + 5 = 0
<=> x4 + x3 + x2 + 5x2 + 5x + 5 = 0
<=> ( x4 + x3 + x2 ) + ( 5x2 + 5x + 5 ) = 0
<=> x2( x2 + x + 1 ) + 5( x2 + x + 1 ) = 0
<=> ( x2 + 5 )( x2 + x + 1 ) = 0
Mà x2 + x + 1 > 0
=> x2 + 5 = 0
<=> x2 = -5 ( vô lí )
=> phương trình trên vô nghiệm
Học dốt :)) bài bn lm tốt nhưng lần sau ko cần phải phân tích rồi ghép tích đâu , cách đấy hơi loằng ngoằng nhưng nếu muốn độ chính xác cao thì bn cx nên kham khảo bài bn ấy !
\(x^4+x^3-6x^2=-5\left(x+1\right)\)
\(x^4+x^3-6x^2=-5x-5\)
\(x^4+x^3-6x^2+5x+5=0\)
=> vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x}{3}+\frac{x^2}{2}=0\)
\(\Leftrightarrow\frac{2x+3x^2}{6}=0\Leftrightarrow3x^2+2x=0\)
\(\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)=0\)
Mà \(x^2+4>0\)nên \(x+1=0\Leftrightarrow x=-1\)
(x - 2)3 - x3 + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 5
<=> 12x - 8 = 5
<=> 12x = 13
<=> \(x=\frac{13}{12}\)